X=the number of defective components
X follows a binomial distribution with n=5 and p=0.15
P(X=x)=Cxnpx(1−p)n−x
a.
P(X=0)=0!(5−0)!5!×0.150×(0.85)5−0=1×1×0.4437=0.4437
b. X=the number of non-defective components
X follows a binomial distribution with n=10×5=50 and p=0.85
At least 8 of randomly selected 10 boxes will have 40, 45 or 50 non-defective components.
P=P(X=40)+P(X=45)+P(X=50)P(X=40)=40!(50−40)!50!×0.8540×0.1550−40=209638330×0.0015023×5.7665×10−9=0.001816P(X=45)=45!(50−45)!50!×0.8545×0.1550−45=1945800×0.000666×7.5937×10−5=0.098493P(X=50)=50!(50−50)!50!×0.8550×0.1550−50=1×0.1968×1=0.000295P=0.001816+0.098493+0.000295=0.100604
Comments