Question #226055

Consider the following hypotheses and the sample data drawn independently from two normally

distributed populations:

H0 : 1 


1
Expert's answer
2021-08-19T08:21:28-0400

Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations.

H0:μ1μ20H_0:\mu_1-\mu_2\geq0

H1:μ1μ2<0H_1:\mu_1-\mu_2<0


xˉ1=249xˉ2=262s1=35s2=23n1=10n2=10\begin{matrix} \bar{x}_1=249 & & \bar{x}_2=262\\ s_1=35 & & s_2=23\\ n_1=10 & & n_2=10\\ \end{matrix}

1.  Calculate the value of the test statistic under the assumption that the population variances are unknown but equal. 


df=df1+df2=9+9=18df=df_1+df_2=9+9=18

t=xˉ1xˉ2((n11)s12+(n21)s22n1+n22)(1n1+1n2)t=\dfrac{ \bar{x}_1- \bar{x}_2}{\sqrt{(\dfrac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2})(\dfrac{1}{n_1}+\dfrac{1}{n_2})}}

=249262((101)352+(101)23210+102)(110+110)=\dfrac{ 249-262}{\sqrt{(\dfrac{(10-1)35^2+(10-1)23^2}{10+10-2})(\dfrac{1}{10}+\dfrac{1}{10})}}

0.9815860.98\approx-0.981586\approx-0.98

2. Calculate the critical value at the 5% level of significance.

df=18,α=0.05,df=18, \alpha=0.05, left-tailed


tc=1.734t_c=-1.734

3. Do you reject the null hypothesis at the 5% level?


t=0.981.734=tct=-0.98\geq-1.734=t_c

No, since the value of the test statistic is not less than the critical value.


4. Calculate the value of the test statistic under the assumption that the population variances are unknown and are not equal.

df=(s12n1+s22n2)2(s12/n1)2n11+(s22/n1)2n2115.55df=\dfrac{(\dfrac{s_1^2}{n_1}+\dfrac{s_2^2}{n_2})^2}{\dfrac{(s_1^2/n_1)^2}{n_1-1}+\dfrac{(s_2^2/n_1)^2}{n_2-1}}\approx15.55

t=xˉ1xˉ2s12n1+s12n10.9815860.98t=\dfrac{ \bar{x}_1- \bar{x}_2}{\sqrt{\dfrac{s_1^2}{n_1}+\dfrac{s_1^2}{n_1}}}\approx-0.981586\approx-0.98

5. Calculate the critical value at the 5% level of significance.

df=15.55,α=0.05,df=15.55, \alpha=0.05, left-tailed


tc=1.749t_c=-1.749

6. Do you reject the null hypothesis at the 5% level?


t=0.981.749=tct=-0.98\geq-1.749=t_c

No, since the value of the test statistic is not less than the critical value.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS