Use the Finite Correction Factor for n > 0.05 N n>0.05N n > 0.05 N
a) μ = 100 , σ = 10 , N = 250 , n = 50 \mu=100, \sigma=10, N=250, n=50 μ = 100 , σ = 10 , N = 250 , n = 50
σ n N − n N − 1 = 10 50 250 − 50 250 − 1 = 20 249 \dfrac{\sigma}{\sqrt{n}}\sqrt{\dfrac{N-n}{N-1}}=\dfrac{10}{\sqrt{50}}\sqrt{\dfrac{250-50}{250-1}}=\dfrac{20}{\sqrt{249}} n σ N − 1 N − n = 50 10 250 − 1 250 − 50 = 249 20
P ( X > 103 ) = 1 − P ( Z ≤ 103 − 100 20 249 ) P(X>103)=1-P(Z\leq\dfrac{103-100}{\dfrac{20}{\sqrt{249}}}) P ( X > 103 ) = 1 − P ( Z ≤ 249 20 103 − 100 )
≈ 1 − P ( Z ≤ 2.367 ) ≈ 0.0090 \approx1-P(Z\leq2.367)\approx0.0090 ≈ 1 − P ( Z ≤ 2.367 ) ≈ 0.0090
b) μ = 100 , σ = 10 , N = 250 , n = 50 \mu=100, \sigma=10, N=250, n=50 μ = 100 , σ = 10 , N = 250 , n = 50
σ n N − n N − 1 = 10 50 250 − 50 250 − 1 = 20 249 \dfrac{\sigma}{\sqrt{n}}\sqrt{\dfrac{N-n}{N-1}}=\dfrac{10}{\sqrt{50}}\sqrt{\dfrac{250-50}{250-1}}=\dfrac{20}{\sqrt{249}} n σ N − 1 N − n = 50 10 250 − 1 250 − 50 = 249 20
P ( 98 < X < 101 ) = P ( X < 101 ) − P ( X ≤ 98 ) P(98<X<101)=P(X<101)-P(X\leq98) P ( 98 < X < 101 ) = P ( X < 101 ) − P ( X ≤ 98 )
= P ( Z < 101 − 100 20 249 ) − P ( Z ≤ 98 − 100 20 249 ) =P(Z<\dfrac{101-100}{\dfrac{20}{\sqrt{249}}})-P(Z\leq\dfrac{98-100}{\dfrac{20}{\sqrt{249}}}) = P ( Z < 249 20 101 − 100 ) − P ( Z ≤ 249 20 98 − 100 )
≈ P ( Z < 0.7890 ) − P ( Z ≤ − 1.5780 ) \approx P(Z<0.7890)-P(Z\leq-1.5780) ≈ P ( Z < 0.7890 ) − P ( Z ≤ − 1.5780 )
≈ 0.784944 − 0.057283 ≈ 0.7277 \approx0.784944-0.057283\approx0.7277 ≈ 0.784944 − 0.057283 ≈ 0.7277
c) μ = 100 , σ = 10 , N = 500 , n = 50 \mu=100, \sigma=10, N=500, n=50 μ = 100 , σ = 10 , N = 500 , n = 50
σ n N − n N − 1 = 10 50 500 − 50 500 − 1 = 30 499 \dfrac{\sigma}{\sqrt{n}}\sqrt{\dfrac{N-n}{N-1}}=\dfrac{10}{\sqrt{50}}\sqrt{\dfrac{500-50}{500-1}}=\dfrac{30}{\sqrt{499}} n σ N − 1 N − n = 50 10 500 − 1 500 − 50 = 499 30
P ( X > 103 ) = 1 − P ( Z ≤ 103 − 100 30 499 ) P(X>103)=1-P(Z\leq\dfrac{103-100}{\dfrac{30}{\sqrt{499}}}) P ( X > 103 ) = 1 − P ( Z ≤ 499 30 103 − 100 )
≈ 1 − P ( Z ≤ 2.2338 ) ≈ 0.0127 \approx1-P(Z\leq2.2338)\approx0.0127 ≈ 1 − P ( Z ≤ 2.2338 ) ≈ 0.0127
P ( 98 < X < 101 ) = P ( X < 101 ) − P ( X ≤ 98 ) P(98<X<101)=P(X<101)-P(X\leq98) P ( 98 < X < 101 ) = P ( X < 101 ) − P ( X ≤ 98 )
= P ( Z < 101 − 100 30 499 ) − P ( Z ≤ 98 − 100 30 499 ) =P(Z<\dfrac{101-100}{\dfrac{30}{\sqrt{499}}})-P(Z\leq\dfrac{98-100}{\dfrac{30}{\sqrt{499}}}) = P ( Z < 499 30 101 − 100 ) − P ( Z ≤ 499 30 98 − 100 )
≈ P ( Z < 0.7446 ) − P ( Z ≤ − 1.4892 ) \approx P(Z<0.7446)-P(Z\leq-1.4892) ≈ P ( Z < 0.7446 ) − P ( Z ≤ − 1.4892 )
≈ 0.771746 − 0.068215 ≈ 0.7035 \approx0.771746-0.068215\approx0.7035 ≈ 0.771746 − 0.068215 ≈ 0.7035
Comments
Leave a comment