Answer to Question #225870 in Statistics and Probability for Chamali Kaluarachc

Question #225870

A sample of 50 observations is taken from a normal population, with mu=100 and =10. If the population is finite with N=250. Find: a) 𝑃(𝑋̅ > 103) b) 𝑃(98 < 𝑋̅ < 101) c) Repeat above exercise with N=500


1
Expert's answer
2021-08-17T10:38:47-0400

Use the Finite Correction Factor for n>0.05Nn>0.05N

a) μ=100,σ=10,N=250,n=50\mu=100, \sigma=10, N=250, n=50


σnNnN1=1050250502501=20249\dfrac{\sigma}{\sqrt{n}}\sqrt{\dfrac{N-n}{N-1}}=\dfrac{10}{\sqrt{50}}\sqrt{\dfrac{250-50}{250-1}}=\dfrac{20}{\sqrt{249}}

P(X>103)=1P(Z10310020249)P(X>103)=1-P(Z\leq\dfrac{103-100}{\dfrac{20}{\sqrt{249}}})

1P(Z2.367)0.0090\approx1-P(Z\leq2.367)\approx0.0090

b) μ=100,σ=10,N=250,n=50\mu=100, \sigma=10, N=250, n=50


σnNnN1=1050250502501=20249\dfrac{\sigma}{\sqrt{n}}\sqrt{\dfrac{N-n}{N-1}}=\dfrac{10}{\sqrt{50}}\sqrt{\dfrac{250-50}{250-1}}=\dfrac{20}{\sqrt{249}}


P(98<X<101)=P(X<101)P(X98)P(98<X<101)=P(X<101)-P(X\leq98)

=P(Z<10110020249)P(Z9810020249)=P(Z<\dfrac{101-100}{\dfrac{20}{\sqrt{249}}})-P(Z\leq\dfrac{98-100}{\dfrac{20}{\sqrt{249}}})

P(Z<0.7890)P(Z1.5780)\approx P(Z<0.7890)-P(Z\leq-1.5780)

0.7849440.0572830.7277\approx0.784944-0.057283\approx0.7277


c) μ=100,σ=10,N=500,n=50\mu=100, \sigma=10, N=500, n=50


σnNnN1=1050500505001=30499\dfrac{\sigma}{\sqrt{n}}\sqrt{\dfrac{N-n}{N-1}}=\dfrac{10}{\sqrt{50}}\sqrt{\dfrac{500-50}{500-1}}=\dfrac{30}{\sqrt{499}}

P(X>103)=1P(Z10310030499)P(X>103)=1-P(Z\leq\dfrac{103-100}{\dfrac{30}{\sqrt{499}}})

1P(Z2.2338)0.0127\approx1-P(Z\leq2.2338)\approx0.0127



P(98<X<101)=P(X<101)P(X98)P(98<X<101)=P(X<101)-P(X\leq98)

=P(Z<10110030499)P(Z9810030499)=P(Z<\dfrac{101-100}{\dfrac{30}{\sqrt{499}}})-P(Z\leq\dfrac{98-100}{\dfrac{30}{\sqrt{499}}})

P(Z<0.7446)P(Z1.4892)\approx P(Z<0.7446)-P(Z\leq-1.4892)

0.7717460.0682150.7035\approx0.771746-0.068215\approx0.7035


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment