A sample of 50 observations is taken from a normal population, with mu=100 and ο³=10. If the population is finite with N=250. Find: a) π(πΜ > 103) b) π(98 < πΜ < 101) c) Repeat above exercise with N=500
Use the Finite Correction Factor for "n>0.05N"
a) "\\mu=100, \\sigma=10, N=250, n=50"
"P(X>103)=1-P(Z\\leq\\dfrac{103-100}{\\dfrac{20}{\\sqrt{249}}})"
"\\approx1-P(Z\\leq2.367)\\approx0.0090"
b) "\\mu=100, \\sigma=10, N=250, n=50"
"=P(Z<\\dfrac{101-100}{\\dfrac{20}{\\sqrt{249}}})-P(Z\\leq\\dfrac{98-100}{\\dfrac{20}{\\sqrt{249}}})"
"\\approx P(Z<0.7890)-P(Z\\leq-1.5780)"
"\\approx0.784944-0.057283\\approx0.7277"
c) "\\mu=100, \\sigma=10, N=500, n=50"
"P(X>103)=1-P(Z\\leq\\dfrac{103-100}{\\dfrac{30}{\\sqrt{499}}})"
"\\approx1-P(Z\\leq2.2338)\\approx0.0127"
"=P(Z<\\dfrac{101-100}{\\dfrac{30}{\\sqrt{499}}})-P(Z\\leq\\dfrac{98-100}{\\dfrac{30}{\\sqrt{499}}})"
"\\approx P(Z<0.7446)-P(Z\\leq-1.4892)"
"\\approx0.771746-0.068215\\approx0.7035"
Comments
Leave a comment