Consider the following information Sx=500,Sy=750,Sxy=100 and n=6 the standard error of estimate is
Solution:
Given, Sxx=500,Syy=750,Sxy=100,n=6S_{xx}=500,S_{yy}=750,S_{xy}=100,n=6Sxx=500,Syy=750,Sxy=100,n=6
r=SxySxxSyy=100500×750=0.1633r=\dfrac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}=\dfrac{100}{\sqrt{500\times750}}=0.1633r=SxxSyySxy=500×750100=0.1633
Then, SSresidual=(1−r2)Syy=(1−0.16332)(750)=730SS_{residual}=(1-r^2)S_{yy}=(1-0.1633^2)(750)=730SSresidual=(1−r2)Syy=(1−0.16332)(750)=730
Now, standard error of estimate=SSresidualn−2=7304=13.51=\sqrt{\dfrac{SS_{residual}}{n-2}}=\sqrt{\dfrac{730}{4}}=13.51=n−2SSresidual=4730=13.51
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment