Let Z~N (0,1).Find a constant c for which P(-c≤ Z ≤ c) = 0.8664
By condition, the mathematical expectation is a=0a=0a=0 and the standard deviation is σ=1\sigma = 1σ=1 .
Then
P(−c≤Z≤c)=0.8664⇒Φ(c−aσ)−Φ(−c−aσ)=0.8664⇒Φ(c)−Φ(−c)=0.8664⇒2Φ(c)=0.8664⇒Φ(c)=0.4332⇒c=1.5P( - c \le Z \le c) = 0.8664 \Rightarrow \Phi \left( {\frac{{c - a}}{\sigma }} \right) - \Phi \left( {\frac{{ - c - a}}{\sigma }} \right) = 0.8664 \Rightarrow \Phi \left( c \right) - \Phi \left( { - c} \right) = 0.8664 \Rightarrow 2\Phi \left( c \right) = 0.8664 \Rightarrow \Phi \left( c \right) = 0.4332 \Rightarrow c = 1.5P(−c≤Z≤c)=0.8664⇒Φ(σc−a)−Φ(σ−c−a)=0.8664⇒Φ(c)−Φ(−c)=0.8664⇒2Φ(c)=0.8664⇒Φ(c)=0.4332⇒c=1.5
Answer: c=1.5c=1.5c=1.5
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments