To avoid detection at customs, a traveler places 6 narcotic tablets in a bottle containing 9 vitamin tablets that are similar in appearance. If the customs official selects 3 of the tablets at random for analysis, what is the probability that the traveler will be arrested for illegal possession of narcotics?
"N="Total number of tablets placed in the bottle"=9+6=15"
"m=" Total number of narcotic drugs in the bottle"=6"
"n=" Total number of tablets selected randomly by the customs official"=3"
Let "x="The number of narcotic tablet(s) selected in the sample.
Since the selections are made without replacement hence, the distribution of "x" would be:
"x" "Hypergeometric (N=15, m=6, n=3)"
The proof of "x" becomes:
"P(x=x)=\\frac{\\begin{pmatrix}m\\\\ x\\end{pmatrix}\\begin{pmatrix}N-m\\\\ \\:n-x\\end{pmatrix}}{\\begin{pmatrix}N\\\\ \\:n\\end{pmatrix}}\\:\\:x=max\\left(0,\\:n+m-N\\right),\\:\\:min\\left(n,\\:m\\right)"
"Hence,\\:max\\left(0,\\:n+m-N\\right)\\:and\\:min\\left(n,m\\right)"
"=max\\left(0,\\:3+6-15\\right)\\:and\\:min\\left(3,\\:6\\right)"
"=max\\left(0,\\:-6\\right)=0\\:and\\:min=3"
The proof of "x" becomes:
"\\:P\\left(x=x\\right)=\\frac{\\begin{pmatrix}6\\\\ x\\end{pmatrix}\\begin{pmatrix}9\\\\ 3-x\\end{pmatrix}}{\\begin{pmatrix}15\\\\ 3\\end{pmatrix}};\\:x=0,\\:1,\\:2,\\:3"
Therefore we need,
"P\\left(The\\:travellers\\:will\\:be\\:arrested\\:for\\:illegal\\:possesion\\:of\\:narcortics\\right)="
"P\\left(There\\:will\\:be\\:at\\,least\\:one\\:narcotic\\:tablet\\:in\\:the\\:sample\\right)="
"P\\left(x\\ge 1\\right)="
"1-P\\left(x<1\\right)" "\\left(Law\\:of\\:complement\\:events\\right)="
"1-P\\left(x=0\\right)"
"=1-\\frac{\\begin{pmatrix}6\\\\ 0\\end{pmatrix}\\begin{pmatrix}9\\\\ 3\\end{pmatrix}}{\\begin{pmatrix}15\\\\ 3\\end{pmatrix}}\\:\\:\\left(By\\:the\\:proof\\:of\\:x\\right)" "\\approx" "0.8154"
Comments
Leave a comment