"S=\\{ e_1,e_2,e_3,e_4\\}"
Given,
"P(e_3)=\\dfrac{1}{3}\\\\P(e_2)=3P(e_1)"
Now,
"P(e_1)+P(e_2)+P(e_3)+P(e_4)=1\\\\\\implies P(e_1)+P(e_2)+P(e_4)=1-\\dfrac{1}{3}=\\dfrac{2}{3}\\\\\\ \\\\\\implies P(e_1)+3P(e_1)+P(e_4)=\\dfrac{2}{3}\\ [\\because P(e_2)=3P(e_1)]\\\\\\ \\\\\\implies 4P(e_1)+P(e_4)=\\dfrac{2}{3}"
Since, the value of "P(e_4)" is not given , so we assume the value of "P(e_4)"
Let "P(e_4)=\\dfrac{1}{6}"
So,
"\\implies 4P(e_1)=\\dfrac{2}{3}-\\dfrac{1}{6}=\\dfrac{3}{6}=\\dfrac{1}{2}\\\\\\ \\\\\\implies P(e_1)=\\dfrac{1}{8}"
and
"P(e_2)=3P(e_1)\\\\\\implies P(e_2)=\\dfrac{3}{8}"
Comments
Leave a comment