Question #216201
If sample space S={e1,e2,e3,e4}, find P(e1 ) and P( e2) if P(e3)=1/3 and P(e2)=3P(e1)
1
Expert's answer
2021-07-14T16:11:43-0400

S={e1,e2,e3,e4}S=\{ e_1,e_2,e_3,e_4\}


Given,

P(e3)=13P(e2)=3P(e1)P(e_3)=\dfrac{1}{3}\\P(e_2)=3P(e_1)


Now,

P(e1)+P(e2)+P(e3)+P(e4)=1    P(e1)+P(e2)+P(e4)=113=23     P(e1)+3P(e1)+P(e4)=23 [P(e2)=3P(e1)]     4P(e1)+P(e4)=23P(e_1)+P(e_2)+P(e_3)+P(e_4)=1\\\implies P(e_1)+P(e_2)+P(e_4)=1-\dfrac{1}{3}=\dfrac{2}{3}\\\ \\\implies P(e_1)+3P(e_1)+P(e_4)=\dfrac{2}{3}\ [\because P(e_2)=3P(e_1)]\\\ \\\implies 4P(e_1)+P(e_4)=\dfrac{2}{3}


Since, the value of P(e4)P(e_4) is not given , so we assume the value of P(e4)P(e_4)

Let P(e4)=16P(e_4)=\dfrac{1}{6}


So,

    4P(e1)=2316=36=12     P(e1)=18\implies 4P(e_1)=\dfrac{2}{3}-\dfrac{1}{6}=\dfrac{3}{6}=\dfrac{1}{2}\\\ \\\implies P(e_1)=\dfrac{1}{8}


and

P(e2)=3P(e1)    P(e2)=38P(e_2)=3P(e_1)\\\implies P(e_2)=\dfrac{3}{8}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS