Answer to Question #215882 in Statistics and Probability for Math

Question #215882

let the continuous random variable x denote the current measured in a thin copper wire in milliamperes. The probability density function is given by


1
Expert's answer
2021-07-13T05:10:10-0400
f(x)=120,for 0x20f(x)=\dfrac{1}{20}, for\ 0\leq x\leq 20

1.


P(5<X<10)=510120dx=[120x]105P(5<X<10)=\displaystyle\int_{5}^{10}\dfrac{1}{20}dx=[\dfrac{1}{20}x]\begin{matrix} 10 \\ 5 \end{matrix}

=1020520=14=\dfrac{10}{20}-\dfrac{5}{20}=\dfrac{1}{4}

2. Using Uniform distribution


F(x)=x0200F(x)=\dfrac{x-0}{20-0}

P(5<X<10)=F(10)F(5)P(5<X<10)=F(10)-F(5)

=10020050200=14=\dfrac{10-0}{20-0}-\dfrac{5-0}{20-0}=\dfrac{1}{4}

3.


μ=A+B2=0+202=10\mu=\dfrac{A+B}{2}=\dfrac{0+20}{2}=10

σ2=(BA)212=(200)212=1003\sigma^2=\dfrac{(B-A)^2}{12}=\dfrac{(20-0)^2}{12}=\dfrac{100}{3}

σ=σ2=1033\sigma=\sqrt{\sigma^2}=\dfrac{10\sqrt{3}}{3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment