Solution:
f(x)= {a−5+x;5<x<=60;otherwise}
(a) Since, f(x) is pdf, ∫56f(x)dx=1
∫56[a−5+x]dx=1⇒[ax−5x+2x2]56=1⇒[6a−30+18]−[5a−25+12.5]=1⇒a−5+5.5=1⇒a=0.5
(b):
Now, f(x)= {x−4.5;5<x<=60;otherwise}
P(X>5.7)=∫5.76(x−4.5)dx=(2x2−4x)5.76=(18−24)−(16.245−22.8)=0.555
(c):
E[X]=∫56x(x−4.5)dx=∫56(x2−4.5x)dx=(3x3−4.5×2x2)56=(3x3−2.25x2)56=(3216−2.25(36))−(3125−2.25(25))=5127
E[X2]=∫56x2(x−4.5)dx=∫56(x3−4.5x2)dx=(4x4−4.5×3x3)56=(4x4−1.5x3)56=(41296−1.5(216))−(4625−1.5(125))=31.25
Now, Var[X]=E[X2]−(E[X])2=31.25−(5127)2=14411
And Var[3+X]=0+Var[X]=14411
Comments