Answer to Question #215830 in Statistics and Probability for Dylan

Question #215830

The random variable Xhas a probability density function,.f{x) where

f(x)= "\\begin{Bmatrix}\n a-5+x; 5<x<=6 \\\\\n 0 ; otherwise \n\\end{Bmatrix}" {

(a) Show that a=1/2

(b) Calculate P( X > 5. 7) .

(c) Find E (X), Var (X) and Var(3+X).


1
Expert's answer
2021-07-12T18:17:00-0400

Solution:

f(x)= "\\begin{Bmatrix}\n a-5+x; 5<x<=6 \\\\\n 0 ; otherwise \n\\end{Bmatrix}"

(a) Since, f(x) is pdf, "\\int_5^6f(x)dx=1"

"\\int_5^6[a-5+x]dx=1\n\\\\ \\Rightarrow [ax-5x+\\dfrac{x^2}2]_5^6=1\n\\\\ \\Rightarrow [6a-30+18]-[5a-25+12.5]=1\n\\\\ \\Rightarrow a-5+5.5=1\n\\\\ \\Rightarrow a=0.5"

(b):

Now, f(x)= "\\begin{Bmatrix}\n x-4.5; 5<x<=6 \\\\\n 0 ; otherwise \n\\end{Bmatrix}"

"P(X>5.7)=\\int_{5.7}^6(x-4.5)dx\n\\\\=(\\dfrac{x^2}2-4x)_{5.7}^6\n\\\\=(18-24)-(16.245-22.8)\n\\\\=0.555"

(c):

"E[X]=\\int_5^6x(x-4.5)dx\n\\\\=\\int_5^6(x^2-4.5x)dx\n\\\\=(\\dfrac{x^3}3-4.5\\times\\dfrac{x^2}2)_5^6\n\\\\=(\\dfrac{x^3}3-2.25x^2)_5^6\n\\\\=(\\dfrac{216}3-2.25(36))-(\\dfrac{125}3-2.25(25))\n\\\\=5\\dfrac{7}{12}"

"E[X^2]=\\int_5^6x^2(x-4.5)dx\n\\\\=\\int_5^6(x^3-4.5x^2)dx\n\\\\=(\\dfrac{x^4}4-4.5\\times\\dfrac{x^3}3)_5^6\n\\\\=(\\dfrac{x^4}4-1.5x^3)_5^6\n\\\\=(\\dfrac{1296}4-1.5(216))-(\\dfrac{625}4-1.5(125))\n\\\\=31.25"

Now, "Var[X]=E[X^2]-(E[X])^2=31.25-(5\\dfrac7{12})^2=\\dfrac{11}{144}"

And "Var[3+X]=0+Var[X]=\\dfrac{11}{144}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog