Question #215830

The random variable Xhas a probability density function,.f{x) where

f(x)= {a5+x;5<x<=60;otherwise}\begin{Bmatrix} a-5+x; 5<x<=6 \\ 0 ; otherwise \end{Bmatrix} {

(a) Show that a=1/2

(b) Calculate P( X > 5. 7) .

(c) Find E (X), Var (X) and Var(3+X).


1
Expert's answer
2021-07-12T18:17:00-0400

Solution:

f(x)= {a5+x;5<x<=60;otherwise}\begin{Bmatrix} a-5+x; 5<x<=6 \\ 0 ; otherwise \end{Bmatrix}

(a) Since, f(x) is pdf, 56f(x)dx=1\int_5^6f(x)dx=1

56[a5+x]dx=1[ax5x+x22]56=1[6a30+18][5a25+12.5]=1a5+5.5=1a=0.5\int_5^6[a-5+x]dx=1 \\ \Rightarrow [ax-5x+\dfrac{x^2}2]_5^6=1 \\ \Rightarrow [6a-30+18]-[5a-25+12.5]=1 \\ \Rightarrow a-5+5.5=1 \\ \Rightarrow a=0.5

(b):

Now, f(x)= {x4.5;5<x<=60;otherwise}\begin{Bmatrix} x-4.5; 5<x<=6 \\ 0 ; otherwise \end{Bmatrix}

P(X>5.7)=5.76(x4.5)dx=(x224x)5.76=(1824)(16.24522.8)=0.555P(X>5.7)=\int_{5.7}^6(x-4.5)dx \\=(\dfrac{x^2}2-4x)_{5.7}^6 \\=(18-24)-(16.245-22.8) \\=0.555

(c):

E[X]=56x(x4.5)dx=56(x24.5x)dx=(x334.5×x22)56=(x332.25x2)56=(21632.25(36))(12532.25(25))=5712E[X]=\int_5^6x(x-4.5)dx \\=\int_5^6(x^2-4.5x)dx \\=(\dfrac{x^3}3-4.5\times\dfrac{x^2}2)_5^6 \\=(\dfrac{x^3}3-2.25x^2)_5^6 \\=(\dfrac{216}3-2.25(36))-(\dfrac{125}3-2.25(25)) \\=5\dfrac{7}{12}

E[X2]=56x2(x4.5)dx=56(x34.5x2)dx=(x444.5×x33)56=(x441.5x3)56=(129641.5(216))(62541.5(125))=31.25E[X^2]=\int_5^6x^2(x-4.5)dx \\=\int_5^6(x^3-4.5x^2)dx \\=(\dfrac{x^4}4-4.5\times\dfrac{x^3}3)_5^6 \\=(\dfrac{x^4}4-1.5x^3)_5^6 \\=(\dfrac{1296}4-1.5(216))-(\dfrac{625}4-1.5(125)) \\=31.25

Now, Var[X]=E[X2](E[X])2=31.25(5712)2=11144Var[X]=E[X^2]-(E[X])^2=31.25-(5\dfrac7{12})^2=\dfrac{11}{144}

And Var[3+X]=0+Var[X]=11144Var[3+X]=0+Var[X]=\dfrac{11}{144}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS