Q1
A mine hauls, on average, three dump truck of waste per hour to a waste dump. For a given hour, find the probability that it will haul the following number of truck loads:
a)Â Â Â Â Â At most 3 trucks.
b)Â Â Â Â Â At least 3 trucks.
c)Â Â Â Â Â Â Five or moreÂ
Let "X=" the number of trucks per hour: "X\\sim Po(\\lambda)."
Given "\\lambda=3."
a)
"P(X\\leq 3)=P(X=0)+P(X=1)+P(X=2)""+P(X=3)=\\dfrac{e^{-\\lambda}\\cdot\\lambda^0}{0!}+\\dfrac{e^{-\\lambda}\\cdot\\lambda^1}{1!}"
"+\\dfrac{e^{-\\lambda}\\cdot\\lambda^2}{2!}+\\dfrac{e^{-\\lambda}\\cdot\\lambda^3}{3!}"
"=\\dfrac{e^{-3}(6+18+27+27)}{6}=13e^{-3}\\approx0.647232"
b)
"P(X\\geq 3)=1-P(X=0)-P(X=1)-P(X=2)""=1-\\dfrac{e^{-\\lambda}\\cdot\\lambda^0}{0!}-\\dfrac{e^{-\\lambda}\\cdot\\lambda^1}{1!}-\\dfrac{e^{-\\lambda}\\cdot\\lambda^2}{2!}"
"=1-\\dfrac{e^{-3}(2+6+9)}{2}=1-8.5e^{-3}\\approx0.576810"
c)
"P(X\\geq 5)=1-P(X=0)-P(X=1)-P(X=2)""-P(X=3)-P(X=4)=1-\\dfrac{e^{-\\lambda}\\cdot\\lambda^0}{0!}"
"-\\dfrac{e^{-\\lambda}\\cdot\\lambda^1}{1!}-\\dfrac{e^{-\\lambda}\\cdot\\lambda^2}{2!}-\\dfrac{e^{-\\lambda}\\cdot\\lambda^3}{3!}-\\dfrac{e^{-\\lambda}\\cdot\\lambda^4}{4!}"
"=1-\\dfrac{e^{-3}(24+72+108+108+81)}{24}"
"=1-\\dfrac{131}{8}e^{-3}\\approx0.184737"
Comments
Leave a comment