Find coefficient of correlation of the following data. Use this data to estimate y when x =
12.
X
3
6
7
10
Y
12
18
25
22
The given data is
Regression coefficient of y on x
"b_{yx}=\\dfrac{n\\sum xy-\\sum x.\\sum y}{n\\sum x^2-(\\sum x)^2}"
"=\\dfrac{4\\times 539-26\\times77}{4\\times 194-(26)^2}\\\\[9pt]=\\dfrac{154}{100}=1.54"
Regression coefficient of x on y
"b_{xy}=\\dfrac{n\\sum xy-\\sum x.\\sum y}{n\\sum y^2-(\\sum y)^2}"
"=\\dfrac{4\\times 539-26\\times 77}{4\\times 1577-(77)^2}\\\\[9pt]=\\dfrac{154}{379}=0.406"
Correlation coefficient "r=\\sqrt{b_{yx}\\times b_{xy}}=\\sqrt{1.54\\times 0.406}=\\sqrt{0.62}=0.787"
Here, "\\bar{x}=\\dfrac{\\sum x}{n}=\\dfrac{26}{4}=6.5"
"\\bar{y}=\\dfrac{\\sum y}{n}=\\dfrac{77}{4}=19.25"
Regression line of y on x is
"y-\\bar{y}=b_{yx}(x-\\bar{x})"
"\\Rightarrow y-19.25=1.54(x-6.5)"
Value of y when x=12 is
"y-19.25=1.54(12-6.5)\\\\\\Rightarrow y=8.47+19.25=27.72"
Comments
Leave a comment