Question #213192

Find coefficient of correlation of the following data. Use this data to estimate y when x =


12.


X


3


6


7


10


Y


12


18


25


22



1
Expert's answer
2021-07-16T13:32:47-0400

The given data is




Regression coefficient of y on x


byx=nxyx.ynx2(x)2b_{yx}=\dfrac{n\sum xy-\sum x.\sum y}{n\sum x^2-(\sum x)^2}


=4×53926×774×194(26)2=154100=1.54=\dfrac{4\times 539-26\times77}{4\times 194-(26)^2}\\[9pt]=\dfrac{154}{100}=1.54


Regression coefficient of x on y


bxy=nxyx.yny2(y)2b_{xy}=\dfrac{n\sum xy-\sum x.\sum y}{n\sum y^2-(\sum y)^2}


=4×53926×774×1577(77)2=154379=0.406=\dfrac{4\times 539-26\times 77}{4\times 1577-(77)^2}\\[9pt]=\dfrac{154}{379}=0.406



Correlation coefficient r=byx×bxy=1.54×0.406=0.62=0.787r=\sqrt{b_{yx}\times b_{xy}}=\sqrt{1.54\times 0.406}=\sqrt{0.62}=0.787



Here, xˉ=xn=264=6.5\bar{x}=\dfrac{\sum x}{n}=\dfrac{26}{4}=6.5


yˉ=yn=774=19.25\bar{y}=\dfrac{\sum y}{n}=\dfrac{77}{4}=19.25


Regression line of y on x is


yyˉ=byx(xxˉ)y-\bar{y}=b_{yx}(x-\bar{x})


y19.25=1.54(x6.5)\Rightarrow y-19.25=1.54(x-6.5)


Value of y when x=12 is

y19.25=1.54(126.5)y=8.47+19.25=27.72y-19.25=1.54(12-6.5)\\\Rightarrow y=8.47+19.25=27.72


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS