Answer to Question #213127 in Statistics and Probability for Nazir Khan

Question #213127

2. Given a normal distribution with = 200 and o² = 100, find

(a) the area below 214;

(b) the area above 179;

(c) the area between 188 and 206;

(d) the x value that has 80% of the area below it;

(e) the two x values containing the middle 75% of the area.


1
Expert's answer
2021-07-05T15:14:59-0400

μ=200σ2=100σ=10\mu=200 \\ \sigma^2 = 100 \\ \sigma= 10

(a)

P(X<214)=P(Z<21420010)=P(Z<1.4)=0.9192P(X<214) = P(Z< \frac{214-200}{10}) \\ =P(Z<1.4) \\ = 0.9192

(b)

P(X>179)=1P(X<179)=1P(Z<17920010)=1P(Z<2.1)=10.01786=0.98214P(X>179) = 1 -P(X<179) \\ = 1 -P(Z< \frac{179-200}{10}) \\ = 1 -P(Z< -2.1) \\ = 1 -0.01786 \\ = 0.98214

(c)

P(188<X<206)=P(X<206)P(X<188)=P(Z<20620010)P(Z<18820010)=P(Z<0.6)P(Z<1.2)=0.725750.11507=0.61068P(188<X<206) = P(X<206) -P(X<188) \\ =P(Z< \frac{206-200}{10}) -P(Z< \frac{188-200}{10}) \\ = P(Z< 0.6) -P(Z< -1.2) \\ = 0.72575 -0.11507 \\ = 0.61068

(d)

P(Z<0.8416)=0.8x20010=0.8416x=200+10×0.8416x=208.416P(Z<0.8416) = 0.8 \\ \frac{x-200}{10}= 0.8416 \\ x = 200 + 10 \times 0.8416 \\ x= 208.416

(e)

P(z<Z<z)=0.75P(Z<z)P(Z<z)=0.75P(Z<z)(1P(Z<z))=0.752P(Z<z)1=0.752P(Z<z)=1.75P(Z<z)=0.875P(-z<Z<z) = 0.75 \\ P(Z<z) -P(Z< -z) = 0.75 \\ P(Z<z) -(1 -P(Z<z)) = 0.75 \\ 2P(Z<z) -1 = 0.75 \\ 2P(Z<z) = 1.75 \\ P(Z<z) = 0.875

The value of z that leaves an area of 0.875 to the right is z1 = -1.15 and the left is z2 = 1.15.

1.15=x120010x1=2001.15×10x1=188.51.15=x220010x2=200+1.15×10x2=211.5-1.15 = \frac{x_1 -200}{10} \\ x_1 = 200 -1.15 \times 10 \\ x_1 = 188.5 \\ 1.15 = \frac{x_2 -200}{10} \\ x_2 = 200 + 1.15 \times 10 \\ x_2 = 211.5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment