μ=200σ2=100σ=10
(a)
P(X<214)=P(Z<10214−200)=P(Z<1.4)=0.9192
(b)
P(X>179)=1−P(X<179)=1−P(Z<10179−200)=1−P(Z<−2.1)=1−0.01786=0.98214
(c)
P(188<X<206)=P(X<206)−P(X<188)=P(Z<10206−200)−P(Z<10188−200)=P(Z<0.6)−P(Z<−1.2)=0.72575−0.11507=0.61068
(d)
P(Z<0.8416)=0.810x−200=0.8416x=200+10×0.8416x=208.416
(e)
P(−z<Z<z)=0.75P(Z<z)−P(Z<−z)=0.75P(Z<z)−(1−P(Z<z))=0.752P(Z<z)−1=0.752P(Z<z)=1.75P(Z<z)=0.875
The value of z that leaves an area of 0.875 to the right is z1 = -1.15 and the left is z2 = 1.15.
−1.15=10x1−200x1=200−1.15×10x1=188.51.15=10x2−200x2=200+1.15×10x2=211.5
Comments
Leave a comment