Question #213128

3. Given the normally distributed variable X with mean 18 and standard deviation 2.5, find

(a) P(X<15):

(h) P(17< X<21);

(c) the value of k such that P(X<k) = 0.2578;

(d) the value of k such that P(X> A) = 0.1539.


1
Expert's answer
2021-07-05T15:03:05-0400

μ=18σ=2.5\mu= 18 \\ \sigma= 2.5

(a)

P(X<15)=P(Z<15182.5)=P(Z<1.2)=0.1151P(X<15) = P(Z< \frac{15-18}{2.5}) \\ = P(Z< -1.2) \\ = 0.1151

(b)

P(17<X<21)=P(X<21)P(X<17)=P(Z<21182.5)P(Z<17182.5)=P(Z<1.2)P(Z<0.4)=0.88490.3446=0.5403P(17<X<21) = P(X<21) -P(X<17) \\ =P(Z< \frac{21-18}{2.5}) -P(Z< \frac{17-18}{2.5}) \\ = P(Z<1.2) -P(Z< -0.4) \\ = 0.8849 -0.3446 \\ = 0.5403

(c)

P(X<k)=0.2578P(Z<0.65)=0.2578k182.5=0.65k=181.65×2.5k=13.875P(X<k) = 0.2578 \\ P(Z< -0.65) = 0.2578 \\ \frac{k-18}{2.5} = -0.65 \\ k = 18 - 1.65 \times 2.5 \\ k = 13.875

(d)

P(X>k)=0.15391P(X<k)=0.1539P(X<k)=10.1539P(X<k)=0.8461P(Z<1.02)=0.8461k182.5=1.02k=18+1.02×2.5k=20.55P(X>k) = 0.1539 \\ 1 -P(X<k) = 0.1539 \\ P(X<k) = 1 -0.1539 \\ P(X<k) = 0.8461 \\ P(Z<1.02) = 0.8461 \\ \frac{k-18}{2.5}= 1.02 \\ k= 18 + 1.02 \times 2.5 \\ k = 20.55


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS