Solution:
f(x)={2x,0,for 0≤x≤2otherwise
E[X]=∫02x(2x)dx=∫02(2x2)dx=[6x3]02=68−0=34
Now, E[∣X−E[X]∣]=E[∣X−34∣]
=∫02∣x−34∣(2x)dx=∫034(34−x)(2x)dx+∫342(x−34)(2x)dx
=∫034(32x−2x2)dx+∫342(−32x+2x2)dx
=[(3x2−6x3)]034+[(−3x2+6x3)]342
=[(3(34)2−6(34)3)−0]+[(−322+623)]−[(−3(34)2+6(34)3)]
=[(3916−62764)]+[−34+68]−[−3916+62764]
=[2716−8132]+[0]−[−2716+8132]=2[2716−8132]=8132
Comments