Question #211756

Let X be a continuous random variable with density function below.

x={x2,for 0x20,otherwise x = \begin{cases} \frac{x}{2}, &\text{for } 0 ≤ x ≤ 2 \\ 0, &\text{otherwise } \end{cases}

Find E [|X-E[X]|].


1
Expert's answer
2021-06-30T06:43:09-0400

Solution:

f(x)={x2,for 0x20,otherwise f(x) = \begin{cases} \frac{x}{2}, &\text{for } 0 ≤ x ≤ 2 \\ 0, &\text{otherwise } \end{cases}

E[X]=02x(x2)dx=02(x22)dx=[x36]02=860=43E[X]=\int_0^2x(\dfrac x2)dx=\int_0^2(\dfrac {x^2}2)dx \\=[\dfrac{x^3}6]_0^2 \\=\dfrac 86-0 \\=\dfrac 43

Now, E[XE[X]]=E[X43]E[|X-E[X]|]=E[|X-\dfrac 43|]

=02x43(x2)dx=043(43x)(x2)dx+432(x43)(x2)dx=\int_0^2|x-\dfrac 43|(\dfrac x2) dx \\=\int_0^{\frac 43}(\dfrac 43-x)(\dfrac x2) dx+\int_{\frac 43}^2(x-\dfrac 43)(\dfrac x2) dx

=043(23xx22)dx+432(23x+x22)dx=\int_0^{\frac 43}(\dfrac 23x-\dfrac {x^2}2) dx+\int_{\frac 43}^2(-\dfrac 23x+\dfrac {x^2}2) dx

=[(x23x36)]043+[(x23+x36)]432=[(\dfrac {x^2}3-\dfrac {x^3}6)]_0^{\frac 43}+[(-\dfrac {x^2}3+\dfrac {x^3}6)]_{\frac 43}^2

=[((43)23(43)36)0]+[(223+236)][((43)23+(43)36)]=[(\dfrac {({\frac 43})^2}3-\dfrac {({\frac 43})^3}6)-0]+[(-\dfrac {2^2}3+\dfrac {2^3}6)]-[(-\dfrac {({\frac 43})^2}3+\dfrac {({\frac 43})^3}6)]

=[(169364276)]+[43+86][1693+64276]=[(\dfrac {{\frac {16}9}}3-\dfrac {{\frac {64}{27}}}6)]+[-\dfrac {4}3+\dfrac {8}6]-[-\dfrac {{\frac {16}9}}3+\dfrac {{\frac {64}{27}}}6]

=[16273281]+[0][1627+3281]=2[16273281]=3281=[\dfrac {16}{27}-\dfrac {32}{81}]+[0]-[-\dfrac {16}{27}+\dfrac {32}{81}] \\=2[\dfrac {16}{27}-\dfrac {32}{81}] \\=\dfrac {32}{81}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS