The joint probability mass function of (X, Y) is given by p(x, y) = k(2x + 3y),
x = 0, 1, 2; y = 1, 2, 3. Find all the marginal and conditional probability
distributions. Also find the probability distribution of (X + Y)
"3k+6k+9k+5k+8k+11k+7k+10k+13k=1"
"k=\\dfrac{1}{72}"
"x=0: p_X(0)=3k+6k+9k=18k=\\dfrac{1}{4}"
"x=2: p_X(2)=7k+10k+13k=30k=\\dfrac{5}{12}"
"p_X(x)=\\begin{cases}\n 1\/4 &\\text{if } x=0 \\\\\n 1\/3 &\\text{if } x=1 \\\\\n 5\/12 &\\text{if } x=2 \\\\\n 0 &\\text{otherwise } \\\\\n\\end{cases}"
"y=1: p_Y(1)=3k+5k+7k=15k=\\dfrac{5}{24}"
"y=3: p_Y(3)=9k+11k+13k=33k=\\dfrac{11}{24}"
Conditional pmf's of "X"given "Y"
Conditional pmf's of "Y"given "X"
"x+y=2, (0,2), (1, 1):p(2)=6k+5k=\\dfrac{11}{72}"
"x+y=3, (0,3),(1,2),(2,1):p(3)=9k+8k+7k=\\dfrac{1}{3}"
"x+y=4, (1,3),(2,2):p(4)=11k+10k=\\dfrac{7}{24}"
"x+y=5, (2,3):p(15)=13k=\\dfrac{13}{72}"
Comments
Leave a comment