Question #210692

The joint probability mass function of (X, Y) is given by p(x, y) = k(2x + 3y),

x = 0, 1, 2; y = 1, 2, 3. Find all the marginal and conditional probability

distributions. Also find the probability distribution of (X + Y)


1
Expert's answer
2021-06-29T03:57:41-0400
xyp(x,y)=1\sum_x\sum_yp(x,y)=1yp(x,y)12303k6k9kx15k8k11k27k10k13k\begin{matrix} & & & y \\ & p(x, y) & 1 & 2 & 3 \\ \hdashline & 0 & 3k & 6k & 9k \\ x & 1 & 5k & 8k & 11k \\ & 2 & 7k & 10k & 13k \\ \end{matrix}

3k+6k+9k+5k+8k+11k+7k+10k+13k=13k+6k+9k+5k+8k+11k+7k+10k+13k=1

k=172k=\dfrac{1}{72}

x=0:pX(0)=3k+6k+9k=18k=14x=0: p_X(0)=3k+6k+9k=18k=\dfrac{1}{4}


x=1:pX(1)=5k+8k+11k=24k=13x=1: p_X(1)=5k+8k+11k=24k=\dfrac{1}{3}

x=2:pX(2)=7k+10k+13k=30k=512x=2: p_X(2)=7k+10k+13k=30k=\dfrac{5}{12}

pX(x)={1/4if x=01/3if x=15/12if x=20otherwise p_X(x)=\begin{cases} 1/4 &\text{if } x=0 \\ 1/3 &\text{if } x=1 \\ 5/12 &\text{if } x=2 \\ 0 &\text{otherwise } \\ \end{cases}

y=1:pY(1)=3k+5k+7k=15k=524y=1: p_Y(1)=3k+5k+7k=15k=\dfrac{5}{24}


y=2:pY(2)=6k+8k+10k=24k=13y=2: p_Y(2)=6k+8k+10k=24k=\dfrac{1}{3}

y=3:pY(3)=9k+11k+13k=33k=1124y=3: p_Y(3)=9k+11k+13k=33k=\dfrac{11}{24}


pY(y)={5/24if y=11/3if y=211/24if y=30otherwise p_Y(y)=\begin{cases} 5/24 &\text{if } y=1 \\ 1/3 &\text{if } y=2 \\ 11/24 &\text{if } y=3 \\ 0 &\text{otherwise } \\ \end{cases}


pXY(xy)=p(x,y)pX(x)p_{X|Y}(x|y)=\dfrac{p(x, y)}{p_X(x)}

Conditional pmf's of XXgiven YY


xpXY(x1)pXY(x2)pXY(x3)01/61/31/215/241/311/2427/301/313/30\def\arraystretch{1.5} \begin{array}{c:c:c:c} x & p_{X|Y}(x|1) & p_{X|Y}(x|2) & p_{X|Y}(x|3) \\ \hline 0 & 1/6 & 1/3 & 1/2 \\ \hdashline 1 & 5/24 & 1/3 & 11/24 \\ \hdashline 2 & 7/30 & 1/3 & 13/30 \\ \hdashline \end{array}


pYX(yx)=p(x,y)pY(y)p_{Y|X}(yx)=\dfrac{p(x, y)}{p_Y(y)}

Conditional pmf's of YYgiven XX


ypYX(y0)pYX(y1)pYX(y2)11/51/37/1521/41/35/1233/111/313/33\def\arraystretch{1.5} \begin{array}{c:c:c:c} y & p_{Y|X}(y|0) & p_{Y|X}(y|1) & p_{Y|X}(y|2) \\ \hline 1 & 1/5 & 1/3 & 7/15 \\ \hdashline 2 & 1/4 & 1/3 & 5/12 \\ \hdashline 3 & 3/11 & 1/3 & 13/33 \\ \hdashline \end{array}


x+y=1,(0,1):p(1)=3k=124x+y=1, (0,1):p(1)=3k=\dfrac{1}{24}

x+y=2,(0,2),(1,1):p(2)=6k+5k=1172x+y=2, (0,2), (1, 1):p(2)=6k+5k=\dfrac{11}{72}

x+y=3,(0,3),(1,2),(2,1):p(3)=9k+8k+7k=13x+y=3, (0,3),(1,2),(2,1):p(3)=9k+8k+7k=\dfrac{1}{3}

x+y=4,(1,3),(2,2):p(4)=11k+10k=724x+y=4, (1,3),(2,2):p(4)=11k+10k=\dfrac{7}{24}

x+y=5,(2,3):p(15)=13k=1372x+y=5, (2,3):p(15)=13k=\dfrac{13}{72}


x+y12345p(x+y)1/2411/721/37/2413/72\def\arraystretch{1.5} \begin{array}{c:c} x+y & 1 & 2 & 3 & 4 & 5 \\ \hline p(x+y) & 1/24 & 11/72 & 1/3 & 7/24 & 13/72 \end{array}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS