Question #210626

Let X be a binomial random variable with p = 0.1 and n = 10. Calculate the following probabilities.

(a) P(X ≤ 2) 

(b) P(X > 8)

(c) P(X = 4) 

(d) P(5 ≤ X ≤ 7)


1
Expert's answer
2021-06-28T02:15:23-0400

(a)

n=10,p=0.1,q=1p=10.1=0.9n=10, p=0.1, q=1-p=1-0.1=0.9


P(X2)=P(X=0)+P(X=1)+P(X=2)P(X\leq 2)=P(X=0)+P(X=1)+P(X=2)

=(100)(0.1)0(0.9)100+(101)(0.1)1(0.9)101=\dbinom{10}{0}(0.1)^0(0.9)^{10-0}+\dbinom{10}{1}(0.1)^1(0.9)^{10-1}

+(102)(0.1)2(0.9)102=0.3486784401+\dbinom{10}{2}(0.1)^2(0.9)^{10-2}=0.3486784401

+0.387420489+0.1937102445+0.387420489+0.1937102445

=0.9298091736=0.9298091736

(b)

n=10,p=0.1,q=1p=10.1=0.9n=10, p=0.1, q=1-p=1-0.1=0.9

P(X>8)=P(X=9)+P(X=10)P(X>8)=P(X=9)+P(X=10)

=(109)(0.1)9(0.9)109+(1010)(0.1)10(0.9)1010=\dbinom{10}{9}(0.1)^9(0.9)^{10-9}+\dbinom{10}{10}(0.1)^{10}(0.9)^{10-10}

=0.000000009+0.0000000001=0.000000009+0.0000000001

=0.0000000091=0.0000000091



(c)

n=10,p=0.1,q=1p=10.1=0.9n=10, p=0.1, q=1-p=1-0.1=0.9

P(X=4)=(104)(0.1)4(0.9)104=0.011160261P(X=4)=\dbinom{10}{4}(0.1)^4(0.9)^{10-4}=0.011160261

(d)

n=10,p=0.1,q=1p=10.1=0.9n=10, p=0.1, q=1-p=1-0.1=0.9


P(5X7)=P(X=5)+P(X=6)+P(X=7)P(5\leq X\leq 7)=P(X=5)+P(X=6)+P(X=7)

=(105)(0.1)5(0.9)105+(106)(0.1)6(0.9)106=\dbinom{10}{5}(0.1)^5(0.9)^{10-5}+\dbinom{10}{6}(0.1)^6(0.9)^{10-6}

+(107)(0.1)7(0.9)107=0.0014880348+\dbinom{10}{7}(0.1)^7(0.9)^{10-7}=0.0014880348

+0.000137781+0.000008748+0.000137781+0.000008748

=0.0016345638=0.0016345638

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS