1. (i) Use normal approximation to a Binomial Distribution (X) having n=500 trials and p = 0.025 for finding out:
(a) P(X>10); (b) P(X<18) (c) P(X>21) (d) P(9<X<14)
"p=0.025 \\\\\n\n\\mu= np \\\\\n\nmu= 50 \\times 0.025= 12.5 \\\\\n\n\\sigma= \\sqrt{np(1-p)} \\\\\n\n\\sigma= \\sqrt{12.5(1-0.025)} = 3.49"
With continuity correction factor
(a)
"P(X>10) = P(X>10.5) \\\\\n\n= 1 -P(X<10.5) \\\\\n\n= 1 -P(Z< \\frac{10.5-12.5}{3.49}) \\\\\n\n= 1 -P(Z< -0.5730) \\\\\n\n= 1 -0.2833 \\\\\n\n=0.7167"
(b)
"P(X<18) = P(X<17.5) \\\\\n\n= P(Z < \\frac{17.5-12.5}{3.49}) \\\\\n\n= P(Z< 1.4326) \\\\\n\n= 0.9240"
(c)
"P(X>21) = P(X>21.5) \\\\\n\n= 1 -P(X<21.5) \\\\\n\n= 1 -P(Z< \\frac{21.5-12.5}{3.49}) \\\\\n\n= 1 -P(Z< 2.5787) \\\\\n\n= 1 -0.9950 \\\\\n\n= 0.005"
(d)
"P(9<X<14) = P(8.5<X<14.5) \\\\\n\n= P(X<14.5) -P(X<8.5) \\\\\n\n=P(Z< \\frac{14.5-12.5}{3.49}) -P(Z< \\frac{8.5-12.5}{3.49}) \\\\\n\n= P(Z< 0.5730) -P(Z< -1.1461) \\\\\n\n= 0.7166 -0.1258 \\\\\n\n= 0.5908"
Comments
Leave a comment