Answer to Question #207834 in Statistics and Probability for shritha

Question #207834

1.      (i) Use normal approximation to a Binomial Distribution (X) having n=500 trials and p = 0.025 for finding out:

(a)   P(X>10);                              (b) P(X<18)       (c) P(X>21)               (d) P(9<X<14)   

        

    


1
Expert's answer
2021-07-18T17:39:14-0400

p=0.025μ=npmu=50×0.025=12.5σ=np(1p)σ=12.5(10.025)=3.49p=0.025 \\ \mu= np \\ mu= 50 \times 0.025= 12.5 \\ \sigma= \sqrt{np(1-p)} \\ \sigma= \sqrt{12.5(1-0.025)} = 3.49

With continuity correction factor

(a)

P(X>10)=P(X>10.5)=1P(X<10.5)=1P(Z<10.512.53.49)=1P(Z<0.5730)=10.2833=0.7167P(X>10) = P(X>10.5) \\ = 1 -P(X<10.5) \\ = 1 -P(Z< \frac{10.5-12.5}{3.49}) \\ = 1 -P(Z< -0.5730) \\ = 1 -0.2833 \\ =0.7167

(b)

P(X<18)=P(X<17.5)=P(Z<17.512.53.49)=P(Z<1.4326)=0.9240P(X<18) = P(X<17.5) \\ = P(Z < \frac{17.5-12.5}{3.49}) \\ = P(Z< 1.4326) \\ = 0.9240

(c)

P(X>21)=P(X>21.5)=1P(X<21.5)=1P(Z<21.512.53.49)=1P(Z<2.5787)=10.9950=0.005P(X>21) = P(X>21.5) \\ = 1 -P(X<21.5) \\ = 1 -P(Z< \frac{21.5-12.5}{3.49}) \\ = 1 -P(Z< 2.5787) \\ = 1 -0.9950 \\ = 0.005

(d)

P(9<X<14)=P(8.5<X<14.5)=P(X<14.5)P(X<8.5)=P(Z<14.512.53.49)P(Z<8.512.53.49)=P(Z<0.5730)P(Z<1.1461)=0.71660.1258=0.5908P(9<X<14) = P(8.5<X<14.5) \\ = P(X<14.5) -P(X<8.5) \\ =P(Z< \frac{14.5-12.5}{3.49}) -P(Z< \frac{8.5-12.5}{3.49}) \\ = P(Z< 0.5730) -P(Z< -1.1461) \\ = 0.7166 -0.1258 \\ = 0.5908


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment