p = 0.025 μ = n p m u = 50 × 0.025 = 12.5 σ = n p ( 1 − p ) σ = 12.5 ( 1 − 0.025 ) = 3.49 p=0.025 \\
\mu= np \\
mu= 50 \times 0.025= 12.5 \\
\sigma= \sqrt{np(1-p)} \\
\sigma= \sqrt{12.5(1-0.025)} = 3.49 p = 0.025 μ = n p m u = 50 × 0.025 = 12.5 σ = n p ( 1 − p ) σ = 12.5 ( 1 − 0.025 ) = 3.49
With continuity correction factor
(a)
P ( X > 10 ) = P ( X > 10.5 ) = 1 − P ( X < 10.5 ) = 1 − P ( Z < 10.5 − 12.5 3.49 ) = 1 − P ( Z < − 0.5730 ) = 1 − 0.2833 = 0.7167 P(X>10) = P(X>10.5) \\
= 1 -P(X<10.5) \\
= 1 -P(Z< \frac{10.5-12.5}{3.49}) \\
= 1 -P(Z< -0.5730) \\
= 1 -0.2833 \\
=0.7167 P ( X > 10 ) = P ( X > 10.5 ) = 1 − P ( X < 10.5 ) = 1 − P ( Z < 3.49 10.5 − 12.5 ) = 1 − P ( Z < − 0.5730 ) = 1 − 0.2833 = 0.7167
(b)
P ( X < 18 ) = P ( X < 17.5 ) = P ( Z < 17.5 − 12.5 3.49 ) = P ( Z < 1.4326 ) = 0.9240 P(X<18) = P(X<17.5) \\
= P(Z < \frac{17.5-12.5}{3.49}) \\
= P(Z< 1.4326) \\
= 0.9240 P ( X < 18 ) = P ( X < 17.5 ) = P ( Z < 3.49 17.5 − 12.5 ) = P ( Z < 1.4326 ) = 0.9240
(c)
P ( X > 21 ) = P ( X > 21.5 ) = 1 − P ( X < 21.5 ) = 1 − P ( Z < 21.5 − 12.5 3.49 ) = 1 − P ( Z < 2.5787 ) = 1 − 0.9950 = 0.005 P(X>21) = P(X>21.5) \\
= 1 -P(X<21.5) \\
= 1 -P(Z< \frac{21.5-12.5}{3.49}) \\
= 1 -P(Z< 2.5787) \\
= 1 -0.9950 \\
= 0.005 P ( X > 21 ) = P ( X > 21.5 ) = 1 − P ( X < 21.5 ) = 1 − P ( Z < 3.49 21.5 − 12.5 ) = 1 − P ( Z < 2.5787 ) = 1 − 0.9950 = 0.005
(d)
P ( 9 < X < 14 ) = P ( 8.5 < X < 14.5 ) = P ( X < 14.5 ) − P ( X < 8.5 ) = P ( Z < 14.5 − 12.5 3.49 ) − P ( Z < 8.5 − 12.5 3.49 ) = P ( Z < 0.5730 ) − P ( Z < − 1.1461 ) = 0.7166 − 0.1258 = 0.5908 P(9<X<14) = P(8.5<X<14.5) \\
= P(X<14.5) -P(X<8.5) \\
=P(Z< \frac{14.5-12.5}{3.49}) -P(Z< \frac{8.5-12.5}{3.49}) \\
= P(Z< 0.5730) -P(Z< -1.1461) \\
= 0.7166 -0.1258 \\
= 0.5908 P ( 9 < X < 14 ) = P ( 8.5 < X < 14.5 ) = P ( X < 14.5 ) − P ( X < 8.5 ) = P ( Z < 3.49 14.5 − 12.5 ) − P ( Z < 3.49 8.5 − 12.5 ) = P ( Z < 0.5730 ) − P ( Z < − 1.1461 ) = 0.7166 − 0.1258 = 0.5908
Comments