the probability of finding 1s electron in hydrogen atom in a given volume element dv is f(r)=4πr^2 A^2 e^-2r/a. determine the value of constant A and hence obtain the mean distance of electron from the origin .
"dV=4\\pi r^2dr"
"4a^2\\pi\\int^{\\infin}_0r^2e^{-2r\/a}dr=1"
"4a^2\\pi\\cdot(-ae^{-2r\/a}\/4)(a^2+2ar+2r^2)|^{\\infin}_0=1"
"\\pi a^5=1"
"a=(\\pi)^{1\/5}=0.6"
"E(r)=4a^2\\pi\\int^{\\infin}_0r^3e^{-2r\/a}dr=4a^2\\pi(-ae^{-2r\/a}\/8)(3a^3+6a^2r+6ar^2+4r^3)|^{\\infin}_0="
"=12a^6\\pi \/8=0.22"
Comments
Leave a comment