the probability of finding 1s electron in hydrogen atom in a given volume element dv is f(r)=4πr^2 A^2 e^-2r/a. determine the value of constant A and hence obtain the mean distance of electron from the origin .
dV=4πr2drdV=4\pi r^2drdV=4πr2dr
4a2π∫0∞r2e−2r/adr=14a^2\pi\int^{\infin}_0r^2e^{-2r/a}dr=14a2π∫0∞r2e−2r/adr=1
4a2π⋅(−ae−2r/a/4)(a2+2ar+2r2)∣0∞=14a^2\pi\cdot(-ae^{-2r/a}/4)(a^2+2ar+2r^2)|^{\infin}_0=14a2π⋅(−ae−2r/a/4)(a2+2ar+2r2)∣0∞=1
πa5=1\pi a^5=1πa5=1
a=(π)1/5=0.6a=(\pi)^{1/5}=0.6a=(π)1/5=0.6
E(r)=4a2π∫0∞r3e−2r/adr=4a2π(−ae−2r/a/8)(3a3+6a2r+6ar2+4r3)∣0∞=E(r)=4a^2\pi\int^{\infin}_0r^3e^{-2r/a}dr=4a^2\pi(-ae^{-2r/a}/8)(3a^3+6a^2r+6ar^2+4r^3)|^{\infin}_0=E(r)=4a2π∫0∞r3e−2r/adr=4a2π(−ae−2r/a/8)(3a3+6a2r+6ar2+4r3)∣0∞=
=12a6π/8=0.22=12a^6\pi /8=0.22=12a6π/8=0.22
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments