The number of calls received by ABC Company follows Poisson distribution with an average of 6 calls per hour.
(a) Find the probability that there will be exactly 3 calls received in an hour. Answer:
(b) Find the probability that there will be at least 2 calls received in an hour. Answer:
(c) Find the probability that there will be exactly 2 calls received in 10 minutes. Answer:
"(a) \\\\\nSolution:\\\\\nP(3)\\\\\n\\space Probability\\space of\\space exactly\\space 3\\space occurrences\\\\\n\n\nmean=\u03bb=6\\\\\n\\space and\\space \\\\\nx=3\\\\\n\\space \\space \\space apply\\space the\\space poisson\\space probability\\space formula:\\\\\nP\n(\nx\n)\n=\n\\frac{e^{\n\u2212\n\u03bb}.\n\u22c5\n\u03bb^\nx}\n{x\n!}\\\\\nwhere\\space \\\\\nx\n\\space is\\space the\\space number\\space of\\space occurrences,\\space \\\\\n\u03bb\n\\space is\\space the\\space mean\\space number\\space of\\space occurrences,\\space and\\space \\\\\ne\n\\space is\\space the\\space constant\\space 2.718.\\\\\\space Substituting\\space in\\space values\\space for\\space this\\space problem,\\space \\\\\nx\n=\n3\\\\\n\\space and\\space \\\\\n\u03bb\n=\n6\\\\\n,\\space we\\space have\\\\\nP\n(\nx\n)\n=\n\\frac{e^{\n\u2212\n6}.\n\u22c5\n6^\n3}\n{3\n!}\\\\\nEvaluating\\space the\\space expression,\\space we\\space have\\\\\nP\n(\n3\n)\n=\n0.089235078359989\\\\\n-------------------------\\\\\nprobability \\space \\space that \\space there \\space will \\space be \\space at \\space least \\space 2 \\space calls \\space received \\space in \\space an \\space hour. \\space \\\\\nP(x \\space \\geq \\space 2)= \\space 1-P(x \\space <2) \\space \\\\\nNow \\space we \\space find \\space P(x<2)\\\\ \\space \nP(x<2)=P(x \\space =0) \\space + \\space P(x \\space =1) \\space \\\\\n\n=\n\\frac{e^{\n\u2212\n6}.\n\u22c5\n6^\n0}\n{0\n!}+\n\\frac{e^{\n\u2212\n6}.\n\u22c5\n6^\n1}\n{1\n!}\\\\\nEvaluating\\space \\space the\\space \\space expression,\\space \\space we\\space \\space have\\\\\nP\n(\n0\n)+P(1)\n=\n0.00247875218+0.0148725131\\\\\n=0.01735126528\\\\\nP(x \\space \\geq \\space 2)= \\space 1-0.01735126528 \\space \\\\\n=0.98264873472 \\\\\n---------------------\\\\\n(C) \\space \\\\\nprobability \\space that \\space there \\space will \\space be \\space exactly \\space 2 \\space calls \\space received \\space in \\space 10 \\space minutes \\space \\\\\nGiven \\space 6 \\space phone \\space call \\space =60 \\space min\\\\\n1 \\space phone \\space call \\space =10 \\space min\\\\\nP(x=2)=\\frac{e^{(-1) \\space } \\space 1^2 \\space }{2!}\\\\\n\\\\\n0.183939721"
Comments
Leave a comment