Calculate the exponential distribution, expected value, and variance of the given data.
μ = 2, x1 = 4, x2 = 1
f(x,μ)=x={μe−μxif x≥00if x<0f(x,\mu)=x = \begin{cases} \mu e^{-\mu x}&\text{if } x\ge0 \\ 0 &\text{if } x<0 \end{cases}f(x,μ)=x={μe−μx0if x≥0if x<0
P(1<x<4)=∫142e−4xdx=−12(e−16−e−4)=0.00916P(1<x<4)=\int^4_12e^{-4x}dx=-\frac{1}{2}(e^{-16}-e^{-4})=0.00916P(1<x<4)=∫142e−4xdx=−21(e−16−e−4)=0.00916
E(X)=1/μ=1/2E(X)=1/\mu=1/2E(X)=1/μ=1/2
V(X)=1/μ2=1/4V(X)=1/\mu^2=1/4V(X)=1/μ2=1/4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments