Question #204917

Q2) Prove that 

2

𝑛Γ(𝑛+

1

2

)

βˆšπœ‹

= 1 βˆ™ 3 βˆ™ 5 β‹― β‹― β‹― (2𝑛 βˆ’


1
Expert's answer
2021-06-09T16:19:40-0400
Ξ“(x)=∫0∞txβˆ’1eβˆ’tdt,x>0\varGamma(x)=\displaystyle\int_{0}^{\infin}t^{x-1}e^{-t}dt, x>0

Then


Ξ“(n+12)=∫0∞tn+12βˆ’1eβˆ’tdt\varGamma(n+\dfrac{1}{2})=\displaystyle\int_{0}^{\infin}t^{n+\tfrac{1}{2}-1}e^{-t}dt

=∫0∞tnβˆ’12eβˆ’tdt=\displaystyle\int_{0}^{\infin}t^{n-\tfrac{1}{2}}e^{-t}dt


Ξ“(n+12)=Ξ“((nβˆ’12)+1)=\varGamma(n+\dfrac{1}{2})=\varGamma((n-\dfrac{1}{2})+1)=

=(nβˆ’12)Ξ“(nβˆ’12)=(n-\dfrac{1}{2})\varGamma(n-\dfrac{1}{2})

=(nβˆ’12)(nβˆ’32)Ξ“(nβˆ’32)=(n-\dfrac{1}{2})(n-\dfrac{3}{2})\varGamma(n-\dfrac{3}{2})

=(nβˆ’12)(nβˆ’32)...(12)Ξ“(12)=(n-\dfrac{1}{2})(n-\dfrac{3}{2})...(\dfrac{1}{2})\varGamma(\dfrac{1}{2})

Ξ“(12)=Ο€\varGamma(\dfrac{1}{2})=\sqrt{\pi}

Ξ“(n+12)=(2nβˆ’1)(2nβˆ’3)...(1)2nΟ€\varGamma(n+\dfrac{1}{2})=\dfrac{(2n-1)(2n-3)...(1)}{2^n}\sqrt{\pi}

=(2nβˆ’1)(2nβˆ’2)(2nβˆ’3)(2nβˆ’4)...(1)2n(2nβˆ’2)(2nβˆ’4)...(2)Ο€=\dfrac{(2n-1)(2n-2)(2n-3)(2n-4)...(1)}{2^n(2n-2)(2n-4)...(2)}\sqrt{\pi}


=(2nβˆ’1)!2nβ‹…2nβˆ’1(nβˆ’1)!Ο€=\dfrac{(2n-1)!}{2^n\cdot2^{n-1}(n-1)!}\sqrt{\pi}

=(2nβˆ’1)!(2n)22nβˆ’1(nβˆ’1)!(2n)Ο€=\dfrac{(2n-1)!(2n)}{2^{2n-1}(n-1)!(2n)}\sqrt{\pi}

=(2n)!22nn!Ο€=\dfrac{(2n)!}{2^{2n}n!}\sqrt{\pi}

22nn!Ξ“(n+12)=(2n)!Ο€2^{2n}n!\varGamma(n+\dfrac{1}{2})=(2n)!\sqrt{\pi}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS