Q2) Prove that
2
𝑛Γ(𝑛+
1
2
)
√𝜋
= 1 ∙ 3 ∙ 5 ⋯ ⋯ ⋯ (2𝑛 −
Then
"=\\displaystyle\\int_{0}^{\\infin}t^{n-\\tfrac{1}{2}}e^{-t}dt"
"=(n-\\dfrac{1}{2})\\varGamma(n-\\dfrac{1}{2})"
"=(n-\\dfrac{1}{2})(n-\\dfrac{3}{2})\\varGamma(n-\\dfrac{3}{2})"
"=(n-\\dfrac{1}{2})(n-\\dfrac{3}{2})...(\\dfrac{1}{2})\\varGamma(\\dfrac{1}{2})"
"\\varGamma(\\dfrac{1}{2})=\\sqrt{\\pi}"
"\\varGamma(n+\\dfrac{1}{2})=\\dfrac{(2n-1)(2n-3)...(1)}{2^n}\\sqrt{\\pi}"
"=\\dfrac{(2n-1)(2n-2)(2n-3)(2n-4)...(1)}{2^n(2n-2)(2n-4)...(2)}\\sqrt{\\pi}"
"=\\dfrac{(2n-1)!(2n)}{2^{2n-1}(n-1)!(2n)}\\sqrt{\\pi}"
"=\\dfrac{(2n)!}{2^{2n}n!}\\sqrt{\\pi}"
"2^{2n}n!\\varGamma(n+\\dfrac{1}{2})=(2n)!\\sqrt{\\pi}"
Comments
Leave a comment