Question #204908

co-efficients of correlation, and The two regression equations from the following informationN= 10, ∑X= 350, ∑Y= 310, ∑(X-35)2 = 162, ∑(Y-31)2 = 222, ∑(X-35)(Y-31)= 92


1
Expert's answer
2021-06-28T04:06:40-0400

(x35)2=162=dx2=162∑(x−35)^2=162=∑dx^2=162

(y31)2=222=dy2=222∑(y−31)^2=222=∑dy^2=222

(x35(y31)=92=dxdy=92∑(x−35(y−31)=92=∑dxdy=92

 Regression equation XX¯=bxyYY¯X- X¯ = b_{xy} Y-Y¯

bxy=NXYXYNY2(Y)2b_{xy} =\frac {N∑XY - ∑X∑Y}{N∑Y^2 -(∑Y)^2}


=10(108500)10850010(96100)96100=\frac{ 10 (108500) -108500}{10(96100) -96100}


=976500864900=\frac{ 976500}{864900}


bxy=1.13b_{xy}= 1.13


x¯=162x¯= √162

=12.73= 12.73

Y¯=222Y¯=√222

=14.9= 14.9


Regression equation of X on Y


X12.73=1.13(Y14.9)X - 12.73 = 1.13(Y -14.9)

X=1.13Y2.17X =1.13Y -2.17


Regression equation of Y on X

YY¯=bxy(XX¯)Y - Y¯= b_{xy} (X-X¯)

=Y14.9=1.13(X12.73)= Y - 14.9 = 1.13(X -12.73)Y=1.13X+2.17Y = 1.13X + 2.17


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS