In a hospital’s emergency for Covid 19 patients, the average number of patients arriving
between 9:00 a.m to 6:00 p.m is 7 per day. Find the probability that, on a given day, the
number of patients arriving at the emergency room will be exactly (R + 1).
Let "X=" the average number of patients arriving per day: "X\\sim Po(\\lambda)."
Given "\\lambda=7"
"R=0:P(X=0+1)=\\dfrac{e^{-7}\\cdot 7^{0+1}}{(0+1)!}\\approx0.00638"
"R=5:P(X=5+1)=\\dfrac{e^{-7}\\cdot 7^{5+1}}{(5+1)!}\\approx0.14900"
"R=8:P(X=0+1)=\\dfrac{e^{-7}\\cdot 7^{8+1}}{(8+1)!}\\approx0.10140"
"R=9:P(X=9+1)=\\dfrac{e^{-7}\\cdot 7^{9+1}}{(9+1)!}\\approx0.07098"
Comments
Leave a comment