Question #204899

In a hospital’s emergency for Covid 19 patients, the average number of patients arriving 

between 9:00 a.m to 6:00 p.m is 7 per day. Find the probability that, on a given day, the 

number of patients arriving at the emergency room will be exactly (R + 1).


1
Expert's answer
2021-06-09T16:05:32-0400

Let X=X= the average number of patients arriving per day: XPo(λ).X\sim Po(\lambda).


P(X=x)=eλλxx!P(X=x)=\dfrac{e^{-\lambda}\cdot\lambda^x}{x!}

Given λ=7\lambda=7


P(X=R+1)=e77R+1(R+1)!P(X=R+1)=\dfrac{e^{-7}\cdot 7^{R+1}}{(R+1)!}

R=0:P(X=0+1)=e770+1(0+1)!0.00638R=0:P(X=0+1)=\dfrac{e^{-7}\cdot 7^{0+1}}{(0+1)!}\approx0.00638




R=1:P(X=1+1)=e771+1(1+1)!0.02234R=1:P(X=1+1)=\dfrac{e^{-7}\cdot 7^{1+1}}{(1+1)!}\approx0.02234




R=2:P(X=2+1)=e772+1(2+1)!0.05213R=2:P(X=2+1)=\dfrac{e^{-7}\cdot 7^{2+1}}{(2+1)!}\approx0.05213




R=3:P(X=3+1)=e773+1(3+1)!0.09123R=3:P(X=3+1)=\dfrac{e^{-7}\cdot 7^{3+1}}{(3+1)!}\approx0.09123




R=4:P(X=4+1)=e774+1(4+1)!0.12772R=4:P(X=4+1)=\dfrac{e^{-7}\cdot 7^{4+1}}{(4+1)!}\approx0.12772

R=5:P(X=5+1)=e775+1(5+1)!0.14900R=5:P(X=5+1)=\dfrac{e^{-7}\cdot 7^{5+1}}{(5+1)!}\approx0.14900


R=6:P(X=6+1)=e776+1(6+1)!0.14900R=6:P(X=6+1)=\dfrac{e^{-7}\cdot 7^{6+1}}{(6+1)!}\approx0.14900


R=7:P(X=7+1)=e777+1(7+1)!0.13038R=7:P(X=7+1)=\dfrac{e^{-7}\cdot 7^{7+1}}{(7+1)!}\approx0.13038

R=8:P(X=0+1)=e778+1(8+1)!0.10140R=8:P(X=0+1)=\dfrac{e^{-7}\cdot 7^{8+1}}{(8+1)!}\approx0.10140

R=9:P(X=9+1)=e779+1(9+1)!0.07098R=9:P(X=9+1)=\dfrac{e^{-7}\cdot 7^{9+1}}{(9+1)!}\approx0.07098




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS