Question #204269

  

  A population consists of the five measurements

 2 , 6 , 8 , 0 , and 1 . How many different samples 

 of size n = 2 can be drawn from the population.

 Construct a table for the possible samples and

 sample mean.        

  



1
Expert's answer
2021-06-08T12:12:23-0400

1.

We have population values 2,6,8,0,12,6,8,0,1 population size N=5N=5 and sample size n=2.n=2.Thus, the number of possible samples which can be drawn without replacement is


(Nn)=(52)=10\dbinom{N}{n}=\dbinom{5}{2}=10


2.


SampleSampleSample meanNo.values(Xˉ)10,10.520,2130,6340,8451,21.561,63.571,84.582,6492,85106,87\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 0,1 & 0.5 \\ \hdashline 2 & 0,2 & 1 \\ \hdashline 3 & 0,6 & 3 \\ \hdashline 4 & 0,8 & 4\\ \hdashline 5 & 1,2 & 1.5 \\ \hdashline 6 & 1,6 & 3.5 \\ \hline 7 & 1,8 & 4.5 \\ \hline 8 & 2,6 & 4 \\ \hline 9 & 2,8 & 5 \\ \hline 10 & 6,8 & 7 \\ \hline \end{array}





Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)0.510.10.050.0251.010.10.100.11.510.10.150.2253.010.10.30.93.510.10.351.2254.020.20.803.24.510.10.452.0255.010.10.52.57.010.10.74.9Total1013.415.1\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 0.5 & 1 & 0.1 & 0.05 & 0.025 \\ \hdashline 1.0 & 1 & 0.1 & 0.10 & 0.1 \\ \hdashline 1.5 & 1 & 0.1 & 0.15 & 0.225 \\ \hdashline 3.0 & 1 & 0.1 & 0.3 & 0.9 \\ \hdashline 3.5 & 1 & 0.1 & 0.35 & 1.225 \\ \hdashline 4.0 & 2& 0.2 & 0.80 & 3.2\\ \hdashline 4.5 & 1& 0.1 & 0.45 & 2.025 \\ \hdashline 5.0 & 1& 0.1 & 0.5 & 2.5 \\ \hdashline 7.0 & 1& 0.1 & 0.7 & 4.9 \\ \hdashline Total & 10 & 1 & 3.4 & 15.1 \\ \hline \end{array}



3.

Mean


μ=2+6+8+0+15=3.4\mu=\dfrac{2+6+8+0+1}{5}=3.4




E(Xˉ)=Xˉf(Xˉ)=3.4E(\bar{X})=\sum\bar{X}f(\bar{X})=3.4

The mean of the sampling distribution of the sample means is equal to the

the mean of the population.



E(Xˉ)=3.4=μE(\bar{X})=3.4=\mu


4.

Variance


σ2=15((23.4)2+(63.4)2+(83.4)2\sigma^2=\dfrac{1}{5}\big((2-3.4)^2+(6-3.4)^2+(8-3.4)^2




+(03.4)2+(13.4)2)=9.44+(0-3.4)^2+(1-3.4)^2\big)=9.44


Standard deviation



σ=σ2=9.443.072458\sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.072458




Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2




=15.1(3.4)2=3.54=15.1-(3.4)^2=3.54




Var(Xˉ)=3.541.881489\sqrt{Var(\bar{X})}=\sqrt{3.54}\approx1.881489

Verification:


Var(Xˉ)=σ2n(NnN1)=9.442(5251)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{9.44}{2}(\dfrac{5-2}{5-1})




=3.54,True=3.54, True




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS