1.
We have population values 2 , 6 , 8 , 0 , 1 2,6,8,0,1 2 , 6 , 8 , 0 , 1 population size N = 5 N=5 N = 5 and sample size n = 2. n=2. n = 2. Thus, the number of possible samples which can be drawn without replacement is
( N n ) = ( 5 2 ) = 10 \dbinom{N}{n}=\dbinom{5}{2}=10 ( n N ) = ( 2 5 ) = 10
2.
S a m p l e S a m p l e S a m p l e m e a n N o . v a l u e s ( X ˉ ) 1 0 , 1 0.5 2 0 , 2 1 3 0 , 6 3 4 0 , 8 4 5 1 , 2 1.5 6 1 , 6 3.5 7 1 , 8 4.5 8 2 , 6 4 9 2 , 8 5 10 6 , 8 7 \def\arraystretch{1.5}
\begin{array}{c:c:c}
Sample & Sample & Sample \ mean \\
No. & values & (\bar{X}) \\ \hline
1 & 0,1 & 0.5 \\
\hdashline
2 & 0,2 & 1 \\
\hdashline
3 & 0,6 & 3 \\
\hdashline
4 & 0,8 & 4\\
\hdashline
5 & 1,2 & 1.5 \\
\hdashline
6 & 1,6 & 3.5 \\
\hline
7 & 1,8 & 4.5 \\
\hline
8 & 2,6 & 4 \\
\hline
9 & 2,8 & 5 \\
\hline
10 & 6,8 & 7 \\
\hline
\end{array} S am pl e N o . 1 2 3 4 5 6 7 8 9 10 S am pl e v a l u es 0 , 1 0 , 2 0 , 6 0 , 8 1 , 2 1 , 6 1 , 8 2 , 6 2 , 8 6 , 8 S am pl e m e an ( X ˉ ) 0.5 1 3 4 1.5 3.5 4.5 4 5 7
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 0.5 1 0.1 0.05 0.025 1.0 1 0.1 0.10 0.1 1.5 1 0.1 0.15 0.225 3.0 1 0.1 0.3 0.9 3.5 1 0.1 0.35 1.225 4.0 2 0.2 0.80 3.2 4.5 1 0.1 0.45 2.025 5.0 1 0.1 0.5 2.5 7.0 1 0.1 0.7 4.9 T o t a l 10 1 3.4 15.1 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline
0.5 & 1 & 0.1 & 0.05 & 0.025 \\
\hdashline
1.0 & 1 & 0.1 & 0.10 & 0.1 \\
\hdashline
1.5 & 1 & 0.1 & 0.15 & 0.225 \\
\hdashline
3.0 & 1 & 0.1 & 0.3 & 0.9 \\
\hdashline
3.5 & 1 & 0.1 & 0.35 & 1.225 \\
\hdashline
4.0 & 2& 0.2 & 0.80 & 3.2\\
\hdashline
4.5 & 1& 0.1 & 0.45 & 2.025 \\
\hdashline
5.0 & 1& 0.1 & 0.5 & 2.5 \\
\hdashline
7.0 & 1& 0.1 & 0.7 & 4.9 \\
\hdashline
Total & 10 & 1 & 3.4 & 15.1 \\ \hline
\end{array} X ˉ 0.5 1.0 1.5 3.0 3.5 4.0 4.5 5.0 7.0 T o t a l f 1 1 1 1 1 2 1 1 1 10 f ( X ˉ ) 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 1 X ˉ f ( X ˉ ) 0.05 0.10 0.15 0.3 0.35 0.80 0.45 0.5 0.7 3.4 X ˉ 2 f ( X ˉ ) 0.025 0.1 0.225 0.9 1.225 3.2 2.025 2.5 4.9 15.1
3.
Mean
μ = 2 + 6 + 8 + 0 + 1 5 = 3.4 \mu=\dfrac{2+6+8+0+1}{5}=3.4 μ = 5 2 + 6 + 8 + 0 + 1 = 3.4
E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 3.4 E(\bar{X})=\sum\bar{X}f(\bar{X})=3.4 E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 3.4 The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
E ( X ˉ ) = 3.4 = μ E(\bar{X})=3.4=\mu E ( X ˉ ) = 3.4 = μ
4.
Variance
σ 2 = 1 5 ( ( 2 − 3.4 ) 2 + ( 6 − 3.4 ) 2 + ( 8 − 3.4 ) 2 \sigma^2=\dfrac{1}{5}\big((2-3.4)^2+(6-3.4)^2+(8-3.4)^2 σ 2 = 5 1 ( ( 2 − 3.4 ) 2 + ( 6 − 3.4 ) 2 + ( 8 − 3.4 ) 2
+ ( 0 − 3.4 ) 2 + ( 1 − 3.4 ) 2 ) = 9.44 +(0-3.4)^2+(1-3.4)^2\big)=9.44 + ( 0 − 3.4 ) 2 + ( 1 − 3.4 ) 2 ) = 9.44
Standard deviation
σ = σ 2 = 9.44 ≈ 3.072458 \sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.072458 σ = σ 2 = 9.44 ≈ 3.072458
V a r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2 Va r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2
= 15.1 − ( 3.4 ) 2 = 3.54 =15.1-(3.4)^2=3.54 = 15.1 − ( 3.4 ) 2 = 3.54
V a r ( X ˉ ) = 3.54 ≈ 1.881489 \sqrt{Var(\bar{X})}=\sqrt{3.54}\approx1.881489 Va r ( X ˉ ) = 3.54 ≈ 1.881489 Verification:
V a r ( X ˉ ) = σ 2 n ( N − n N − 1 ) = 9.44 2 ( 5 − 2 5 − 1 ) Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{9.44}{2}(\dfrac{5-2}{5-1}) Va r ( X ˉ ) = n σ 2 ( N − 1 N − n ) = 2 9.44 ( 5 − 1 5 − 2 )
= 3.54 , T r u e =3.54, True = 3.54 , T r u e
Comments