1.
We have population values 1,2,3,4,5,6 population size N=6.
μ=61+2+3+4+5+6=3.5 2.
σ2=N1i∑(xi−μ)2
σ2=61((1−3.5)2+(2−2.5)2+(3−3.5)2+(4−3.5)2
(5−3.5)2+(6−3.5)2)=617.5≈2.916667 3.
σ=σ2=617.5≈1.707825
4.
Let sample size n=2.Thus, the number of possible samples which can be drawn without replacement is
(nN)=(26)=15
2.
SampleNo.123456789101112131415Samplevalues1,21,31,41,51,62,32,42,52,63,43,53,64,54,65,6Sample mean(Xˉ)3/24/25/26/27/25/26/27/28/27/28/29/29/210/211/2
Xˉ3/24/25/26/27/28/29/210/211/2Totalf11223221115f(Xˉ)1/151/152/152/153/102/152/151/151/151Xˉf(Xˉ)3/304/3010/3012/3021/3016/3018/3010/3011/30105/30Xˉ2f(Xˉ)9/6016/6050/9072/60147/60128/60162/60100/60121/60805/60
E(Xˉ)=∑Xˉf(Xˉ)=30105=3.5The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
E(Xˉ)=3.5=μ
Var(Xˉ)=∑Xˉ2f(Xˉ)−(∑Xˉf(Xˉ))2
=60805−(30105)2=67≈1.666667
Var(Xˉ)=67≈1.080123Verification:
Var(Xˉ)=nσ2(N−1N−n)=6(2)17.5(6−16−2)=33.5≈1.666667,True
Comments