Question #203221

given: random sample of size n= 2 are drawn from a finite population consisting of the numbers 5,6,7,8, and 9

  1. How many possible samples are there
  2. List all the possible samples and the corresponding mean for each sample.
  3. Construct the sampling distribution of the sample means.
  4. Construct the histogram for the sampling distribution of the sample mean.


Please answer my question! Thank u very much! I love this site! Next time I will download the app! Love it!😊


1
Expert's answer
2021-06-07T12:06:41-0400

1.

We have population values 5,6,7,8,95,6,7,8,9 population size N=5N=5 and sample size n=2.n=2.Thus, the number of possible samples which can be drawn without replacement is


(Nn)=(52)=10\dbinom{N}{n}=\dbinom{5}{2}=10


2.


SampleSampleSample meanNo.values(Xˉ)15,65.525,76.035,86.545,97.056,76.566,87.076,97.587,87.597,98.0108,98.5\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 5,6 & 5.5 \\ \hdashline 2 & 5,7 & 6.0 \\ \hdashline 3 & 5,8 & 6.5 \\ \hdashline 4 & 5,9 & 7.0\\ \hdashline 5 & 6,7 & 6.5 \\ \hdashline 6 & 6,8 & 7.0 \\ \hline 7 & 6,9 & 7.5 \\ \hline 8 & 7,8 & 7.5 \\ \hline 9 & 7,9 & 8.0 \\ \hline 10 & 8,9 & 8.5 \\ \hline \end{array}





Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)5.510.10.553.0256.010.10.603.6006.520.21.308.4507.020.21.409.8007.520.21.5011.2508.010.10.806.4008.510.10.857.225Total101749.75\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 5.5 & 1 & 0.1 & 0.55 & 3.025 \\ \hdashline 6.0 & 1 & 0.1 & 0.60 & 3.600 \\ \hdashline 6.5 & 2 & 0.2 & 1.30 & 8.450 \\ \hdashline 7.0 & 2 & 0.2 & 1.40 & 9.800 \\ \hdashline 7.5 & 2 & 0.2 & 1.50 & 11.250 \\ \hdashline 8.0 & 1& 0.1 & 0.80 & 6.400\\ \hdashline 8.5 & 1& 0.1 & 0.85 & 7.225 \\ \hdashline Total & 10 & 1 & 7 & 49.75 \\ \hline \end{array}



3.

Mean


μ=5+6+7+8+95=7\mu=\dfrac{5+6+7+8+9}{5}=7




E(Xˉ)=Xˉf(Xˉ)=7E(\bar{X})=\sum\bar{X}f(\bar{X})=7

The mean of the sampling distribution of the sample means is equal to the

the mean of the population.



E(Xˉ)=3.4=μE(\bar{X})=3.4=\mu


4.

Variance


σ2=15((57)2+(67)2+(77)2\sigma^2=\dfrac{1}{5}\big((5-7)^2+(6-7)^2+(7-7)^2(87)2+(97)2)=2(8-7)^2+(9-7)^2\big)=2


Standard deviation



σ=σ2=21.41421356\sigma=\sqrt{\sigma^2}=\sqrt{2}\approx1.41421356




Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2




=49.75(7)2=0.75=49.75-(7)^2=0.75




Var(Xˉ)=118751.254326\sqrt{Var(\bar{X})}=\sqrt{\dfrac{118}{75}}\approx1.254326

Verification:


Var(Xˉ)=σ2n(NnN1)=22(5251)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{2}{2}(\dfrac{5-2}{5-1})




=0.75,True=0.75, True





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS