Question #203183

Suppose X1,X2,...,Xn is a RS from Bernoulli distribution. Define the estimator theta hat=1/n+√n( summation Xi+√n/n) Show that theta hat is a consistent estimator of theta



1
Expert's answer
2022-01-10T16:23:28-0500

estimator of Bernoulli distribution:

θ=p=xin\theta=p=\frac{\sum x_i}{n}


θ^\hat{\theta } is a consistent estimator if

limnPr(θ^θ>ε)=0\displaystyle \lim_{n\to \infin} Pr(|\hat{\theta}-\theta|> \varepsilon)=0

for all ε>0\varepsilon >0


then:

θ^θ=1n+n(xi+n)/nxin\hat{\theta}-\theta=\frac{1}{n+\sqrt n}( \sum x_i+\sqrt n)/n-\frac{\sum x_i}{n}


limnθ^θ=0\displaystyle \lim_{n\to \infin}|\hat{\theta}-\theta|=0


limnPr(0>ε)=0\displaystyle \lim_{n\to \infin} Pr(0> \varepsilon)=0


so, θ^\hat{\theta } is a consistent estimator of θ\theta


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS