Suppose X1,X2,...,Xn is a RS from Bernoulli distribution. Define the estimator theta hat=1/n+√n( summation Xi+√n/n) Show that theta hat is a consistent estimator of theta
estimator of Bernoulli distribution:
θ=p=∑xin\theta=p=\frac{\sum x_i}{n}θ=p=n∑xi
θ^\hat{\theta }θ^ is a consistent estimator if
limn→∞Pr(∣θ^−θ∣>ε)=0\displaystyle \lim_{n\to \infin} Pr(|\hat{\theta}-\theta|> \varepsilon)=0n→∞limPr(∣θ^−θ∣>ε)=0
for all ε>0\varepsilon >0ε>0
then:
θ^−θ=1n+n(∑xi+n)/n−∑xin\hat{\theta}-\theta=\frac{1}{n+\sqrt n}( \sum x_i+\sqrt n)/n-\frac{\sum x_i}{n}θ^−θ=n+n1(∑xi+n)/n−n∑xi
limn→∞∣θ^−θ∣=0\displaystyle \lim_{n\to \infin}|\hat{\theta}-\theta|=0n→∞lim∣θ^−θ∣=0
limn→∞Pr(0>ε)=0\displaystyle \lim_{n\to \infin} Pr(0> \varepsilon)=0n→∞limPr(0>ε)=0
so, θ^\hat{\theta }θ^ is a consistent estimator of θ\thetaθ
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments