Question #202810

For the given distribution:

P(X=x) = 2/3(1/3)x ; x= 0,1,2,....., find moment generating function, mean and variance of X


1
Expert's answer
2021-06-13T16:43:59-0400
MX(t)=E[etX]=x=0etx(23)(13)x=23x=0(et3)xM_X(t)=E[e^{tX}]=\displaystyle\sum_{x=0}^{\infin}e^{tx}(\dfrac{2}{3})(\dfrac{1}{3})^x=\dfrac{2}{3}\displaystyle\sum_{x=0}^{\infin}(\dfrac{e^t}{3})^x

=23x=0(et3)x=23(11et3)=23et, et3<1=\dfrac{2}{3}\displaystyle\sum_{x=0}^{\infin}(\dfrac{e^t}{3})^x=\dfrac{2}{3}(\dfrac{1}{1-\dfrac{e^t}{3}})=\dfrac{2}{3-e^t},\ \dfrac{e^t}{3}<1


MX(t)=23et, t<ln3M_X(t)=\dfrac{2}{3-e^t},\ t<\ln3

dMdt=2et(3et)2\dfrac{dM}{dt}=\dfrac{2e^t}{(3-e^t)^2}

dMdtt=0=2(1)(31)2=12\dfrac{dM}{dt}|_{t=0}=\dfrac{2(1)}{(3-1)^2}=\dfrac{1}{2}

mean=E[X]=12mean=E[X]=\dfrac{1}{2}

d2Mdt2=2et(3et)2+4e2t(3et)(3et)4\dfrac{d^2M}{dt^2}=\dfrac{2e^t(3-e^t)^2+4e^{2t}(3-e^t)}{(3-e^t)^4}

=2et(3+et)(3et)3=\dfrac{2e^t(3+e^t)}{(3-e^t)^3}


d2Mdt2t=0=2(1)(3+1)(31)3=1\dfrac{d^2M}{dt^2}|_{t=0}=\dfrac{2(1)(3+1)}{(3-1)^3}=1

Var(X)=1(12)2=34Var(X)=1-(\dfrac{1}{2})^2=\dfrac{3}{4}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS