For the given distribution:
P(X=x) = 2/3(1/3)x ; x= 0,1,2,....., find moment generating function, mean and variance of X
"=\\dfrac{2}{3}\\displaystyle\\sum_{x=0}^{\\infin}(\\dfrac{e^t}{3})^x=\\dfrac{2}{3}(\\dfrac{1}{1-\\dfrac{e^t}{3}})=\\dfrac{2}{3-e^t},\\ \\dfrac{e^t}{3}<1"
"\\dfrac{dM}{dt}=\\dfrac{2e^t}{(3-e^t)^2}"
"\\dfrac{dM}{dt}|_{t=0}=\\dfrac{2(1)}{(3-1)^2}=\\dfrac{1}{2}"
"mean=E[X]=\\dfrac{1}{2}"
"\\dfrac{d^2M}{dt^2}=\\dfrac{2e^t(3-e^t)^2+4e^{2t}(3-e^t)}{(3-e^t)^4}"
"=\\dfrac{2e^t(3+e^t)}{(3-e^t)^3}"
"Var(X)=1-(\\dfrac{1}{2})^2=\\dfrac{3}{4}"
Comments
Leave a comment