For normal distribution with mean zero and variance σ2 show that:
E(|x|)= [√(2/π)]σ.
The probability density function (PDF) for a normal "X\\sim (\\mu, \\sigma^2 )" is:
For normal distribution with mean zero and variance σ2
"f_X(x)=\\dfrac{1}{\\sigma \\sqrt{2\\pi }}e^{-\\frac{1}{2}(\\frac{x}{\\sigma})^2}""E(|X|)=\\displaystyle\\int_{-\\infin}^{\\infin}|x|f_X(x)dx"
Let "z=\\dfrac{x}{\\sigma}"
Then "dx=\\sigma dz"
"=2\\displaystyle\\int_{0}^{\\infin}x\\dfrac{1}{\\sigma \\sqrt{2\\pi }}e^{-\\frac{1}{2}(\\frac{x}{\\sigma})^2}dx"
"=\\displaystyle\\int_{0}^{\\infin}\\dfrac{2\\sigma}{ \\sqrt{2\\pi }}ze^{-\\frac{1}{2}z^2}dz"
"=-\\dfrac{2\\sigma}{ \\sqrt{2\\pi }}\\big[e^{-\\frac{1}{2}z^2}\\big]\\begin{matrix}\n \\infin \\\\\n 0\n\\end{matrix}=\\sqrt{\\dfrac{2}{\\pi}}\\cdot\\sigma"
"E(|X|)=\\sqrt{\\dfrac{2}{\\pi}}\\cdot\\sigma"
Comments
Leave a comment