Answer to Question #202768 in Statistics and Probability for Raj Kumar

Question #202768

For normal distribution with mean zero and variance σ2 show that:


E(|x|)= [√(2/π)]σ.


1
Expert's answer
2021-06-04T13:57:01-0400

The probability density function (PDF) for a normal "X\\sim (\\mu, \\sigma^2 )" is:


"f_X(x)=\\dfrac{1}{\\sigma \\sqrt{2\\pi }}e^{-\\frac{1}{2}(\\frac{x-\\mu}{\\sigma})^2}"


For normal distribution with mean zero and variance σ2

"f_X(x)=\\dfrac{1}{\\sigma \\sqrt{2\\pi }}e^{-\\frac{1}{2}(\\frac{x}{\\sigma})^2}"

"E(|X|)=\\displaystyle\\int_{-\\infin}^{\\infin}|x|f_X(x)dx"




"=2\\displaystyle\\int_{0}^{\\infin}x\\dfrac{1}{\\sigma \\sqrt{2\\pi }}e^{-\\frac{1}{2}(\\frac{x}{\\sigma})^2}dx"

Let "z=\\dfrac{x}{\\sigma}"

Then "dx=\\sigma dz"


"E(|X|)=\\displaystyle\\int_{-\\infin}^{\\infin}|x|f_X(x)dx"

"=2\\displaystyle\\int_{0}^{\\infin}x\\dfrac{1}{\\sigma \\sqrt{2\\pi }}e^{-\\frac{1}{2}(\\frac{x}{\\sigma})^2}dx"

"=\\displaystyle\\int_{0}^{\\infin}\\dfrac{2\\sigma}{ \\sqrt{2\\pi }}ze^{-\\frac{1}{2}z^2}dz"

"=-\\dfrac{2\\sigma}{ \\sqrt{2\\pi }}\\big[e^{-\\frac{1}{2}z^2}\\big]\\begin{matrix}\n \\infin \\\\\n 0\n\\end{matrix}=\\sqrt{\\dfrac{2}{\\pi}}\\cdot\\sigma"

"E(|X|)=\\sqrt{\\dfrac{2}{\\pi}}\\cdot\\sigma"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS