Let X1,X2,.....,Xn be random sample of size n from a distribution with probability
density function
f(X; ,0)={ θX^(θ-1), 0<X<1, θ>0; 0, elsewhere
Obtain a maximum likeyhood estimator of θ.
Solution:
Given,
"f(x; \u03b8)=\\{ \u03b8x^{\u03b8-1}, 0<x<1, \u03b8>0\n\\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 0, \\ elsewhere"
"L(\u03b8)= \\Pi_{i=1}^n \\ f(x_i; \u03b8)= \\Pi_{i=1}^n \\ \u03b8x_i^{\u03b8-1}\n\\\\=\u03b8x_1^{\u03b8-1}.\u03b8x_2^{\u03b8-1}.\u03b8x_3^{\u03b8-1}....\u03b8x_n^{\u03b8-1}\n\\\\=\u03b8^n{x_i}^{\u03b8-1}"
"\\Rightarrow \\log L(\u03b8)=\\log (\u03b8^n{x_i}^{\u03b8-1})=\\log (\u03b8^n)+\\log ({x_i}^{\u03b8-1})\n\\\\=n \\log\u03b8+(\u03b8-1)\\log x_i"
"\\Rightarrow \\dfrac{d \\ \\log L(\u03b8)}{d\u03b8}=\\dfrac n\u03b8+\\log x_i"
Put "\\dfrac{d \\ \\log L(\u03b8)}{d\u03b8}=0"
"\\dfrac n\u03b8+\\log x_i=0\n\\\\ \\Rightarrow \\dfrac n\u03b8=-\\log x_i\n\\\\ \\Rightarrow \u03b8=\\dfrac{n}{-\\log x_i}=\\dfrac{-n}{\\log (\\dfrac{x_i}{n}.n)}=\\dfrac{-n}{(\\log \\bar x)+(\\log n)}"
Thus, MLE "=\\hat \u03b8=\\dfrac{-n}{(\\log \\bar x)+(\\log n)}"
Comments
Leave a comment