A researcher wants to understand how an annual mortgage payment (in Ringgit) depends on income level and zonal location allowing for interaction. The data are shown as below.
LOW
MEDIUM
HIGH
KOTA KINABALU
130
186
231
128
201
216
201
195
171
190
186
216
150
191
186
SANDAKAN
126
218
306
220
263
351
260
230
330
311
308
486
280
314
498
TAWAU
233
171
231
173
186
186
131
21
243
128
306
201
77
231
207
LAHAD DATU
120
183
231
180
96
156
160
141
168
130
126
141
80
105
110
KENINGAU
13
46
65
18
31
36
18
46
51
23
41
46
26
41
39
a) Determine the total sum of square income (factor A), sum of square for zonal location (factor B), sum of square for the interaction between income and zonal location, and error sum of square. 10 marks
b) Determine the F-Statistics and P-Value for income, zonal location and interaction between income and zonal location. 6 marks
a)
The sum of square income (factor A):
"SS_A=bn\\displaystyle{\\sum^a(\\overline{x}_i-\\overline{x})^2}"
"\\overline{x}=169"
"SS_A=5\\cdot5((140-169)^2+(163-169)^2+(196-169)^2)="
"=21678"
The sum of square for zonal location (factor B):
"SS_B=an\\displaystyle{\\sum^b(\\overline{x}_j-\\overline{x})^2}"
"SS_B=5\\cdot3((185-169)^2+(300-169)^2+(182-169)^2+"
"+(142-169)^2+(36-169)^2=324351"
The sum of square for the interaction between income and zonal location:
"SS_{AB}=SS_{cells}-SS_A-SS_B"
"SS_{cells}=n\\sum\\sum(\\overline{x}_{ij}-\\overline{x})^2"
"SS_{cells}=5\\cdot125918=377754"
"SS_{AB}=377754-21678-324351=31724"
Error sum of square:
"SS_E=SS_{total}-SS_A-SS_B-SS_{AB}"
"SS_{total}=\\sum\\sum\\sum(x-\\overline{x})^2"
"SS_{total}=799206"
"SS_E=799206-377754=421452"
b)
F-statistics:
For income:
"F_A=\\frac{MS_A}{MS_E}"
"MS_A=SS_A\/df_A"
"df_A=a-1=3-1=2"
"MS_A=21678\/2=10839"
"MS_E=SS_E\/df_E"
"df_E=ab(n-1)=3\\cdot5(5-1)=60"
"MS_E=421452\/60=7024"
"F_A=10839\/7024=1.5431"
p-value"=0.3186"
For zonal location:
"F_B=\\frac{MS_B}{MS_E}"
"MS_B=SS_B\/df_B"
"df_B=b-1=5-1=4"
"MS_B=324351\/4=81088"
"F_B=81088\/7024=11.5444"
p-value"=0.0218"
For interaction between income and zonal location:
"F_{AB}=\\frac{MS_{AB}}{MS_E}"
"MS_{AB}=SS_{AB}\/df_{AB}"
"df_{AB}=df_A\\cdot df_B=2\\cdot4=8"
"MS_{AB}=31724\/8=3965"
"F_{AB}=3965\/7024=0.5646"
p-value"=0.6081"
Comments
Leave a comment