Question #202074

Samples of 4 cards are drawn from a population of 6 cards numbered 1-6. Construct a sampling distribution of the sample means and answer the following questions:

1. How many samples of size 4 can be drawn from the population?

2. What are the possible means?

3. What is the probability of getting 4 as a mean?

4. What is the probability of getting 3.5 as a mean?


1
Expert's answer
2021-06-03T12:52:38-0400

We have population values 1,2,3,4,5,61,2,3,4,5,6 population size N=6N=6 and sample size n=4.n=4. Thus, the number of possible samples which can be drawn without replacement is


(Nn)=(64)=15\dbinom{N}{n}=\dbinom{6}{4}=15SampleSampleSample meanNo.values(Xˉ)11,2,3,42.521,2,3,52.7531,2,3,6341,2,4,5351,2,4,63.2561,2,5,63.571,3,4,53.2581,3,4,63.591,3,5,63.75101,4,5,64112,3,4,53.5122,3,4,63.75132,3,5,64142,4,5,64.25153,4,5,64.5\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 1,2,3,4 & 2.5 \\ \hdashline 2 & 1,2,3,5 & 2.75 \\ \hdashline 3 & 1,2,3,6 & 3 \\ \hdashline 4 & 1,2,4,5 & 3 \\ \hdashline 5 & 1,2,4,6 & 3.25 \\ \hline 6 & 1,2,5,6 & 3.5 \\ \hline 7 & 1,3,4,5 & 3.25 \\ \hline 8 & 1,3,4,6 & 3.5 \\ \hline 9 & 1,3,5,6 & 3.75 \\ \hline 10 & 1,4,5,6 & 4 \\ \hline 11 & 2,3,4,5 & 3.5 \\ \hline 12 & 2,3,4,6 & 3.75 \\ \hline 13 & 2,3,5,6 & 4 \\ \hline 14 & 2,4,5,6 & 4.25 \\ \hline 15 & 3,4,5,6 & 4.5 \\ \hline \end{array}





Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)10/411/159/2081/8011/411/1511/60121/24012/422/1524/60288/24013/422/1526/60338/24014/433/1542/60588/24015/422/1530/60450/24016/422/1532/60512/24017/411/1517/60289/24018/411/1518/60324/240Total151207/602910/240\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 10/4 & 1& 1/15 & 9/20 & 81/80 \\ \hdashline 11/4 & 1 & 1/15 & 11/60 & 121/240 \\ \hdashline 12/4 & 2 & 2/15 & 24/60 & 288/240 \\ \hdashline 13/4 & 2 & 2/15 & 26/60 & 338/240 \\ \hdashline 14/4 & 3& 3/15 & 42/60 & 588/240 \\ \hdashline 15/4 & 2 & 2/15 & 30/60 & 450/240 \\ \hdashline 16/4 & 2 & 2/15 & 32/60 & 512/240 \\ \hdashline 17/4 & 1 & 1/15 & 17/60 & 289/240 \\ \hdashline 18/4 & 1 & 1/15 & 18/60 & 324/240 \\ \hdashline Total & 15 & 1 & 207/60 & 2910/240 \\ \hline \end{array}



2.

Possible means 2.5,2.75,3,3.5,3.75,4,4.25,4.52.5,2.75,3,3.5,3.75,4,4.25,4.5


3.


P(Xˉ=4)=215P(\bar{X}=4)=\dfrac{2}{15}

4.


P(Xˉ=3.5)=315P(\bar{X}=3.5)=\dfrac{3}{15}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS