Suppose the joint p.d.f of (X,Y) is given by f(x,y) = x^2 + xy/3 0 < x < 1 , 0 < y < 2 = 0 otherwise a) Verify that given f(x,y) is a joint density function? b) Find marginal and conditional probability density functions? c) Compute P (Y < ½ | X < ½ )
a)
for joint p.d.f:
"\\int^{\\infin}_{-\\infin}\\int^{\\infin}_{-\\infin}f(x,y)dxdy=1"
we have:
"\\int^{2}_{0}\\int^{1}_{0}(x^2 + xy\/3)dxdy=\\int^{2}_{0}(x^3\/3+x^2y\/6)|^1_0dy="
"=\\int^{2}_{0}(1\/3+y\/6)dy=(y\/3+y^2\/12)|^2_0=2\/3+4\/12=1"
so, f(x,y) is joint density function
b)
Marginal PDFs:
"f(x)=\\int^2_0 f(x,y)dy=\\int^2_0 (x^2 + xy\/3)dy=(x^2y+xy^2\/6)|^2_0="
"=2x^2+2x\/3"
"f(y)=\\int^1_0 f(x,y)dx=\\int^1_0 (x^2 + xy\/3)dx=(x^3\/3+x^2y\/6)|^1_0="
"=1\/3+y\/6"
conditional probability density functions:
"f(x|y)=\\frac{f(x,y)}{f(y)}=\\frac{x^2 + xy\/3}{1\/3+y\/6}"
"f(y|x)=\\frac{f(x,y)}{f(x)}=\\frac{x^2 + xy\/3}{2x^2+2x\/3}=\\frac{x + y\/3}{2x+2\/3}"
c)
"P (Y < \u00bd | X < \u00bd )=\\frac{P (Y < \u00bd ,X < \u00bd )}{P(X<1\/2)}"
"P (Y < \u00bd ,X < \u00bd )=\\int^{1\/2}_{0}\\int^{1\/2}_{0}f(x,y)dxdy=\\int^{1\/2}_{0}\\int^{1\/2}_{0}(x^2 + xy\/3)dxdy="
"=\\int^{1\/2}_{0}(x^3\/3+x^2y\/6)|^{1\/2}_{0}dy=\\int^{1\/2}_{0}(1\/24+y\/24)dy="
"=(y\/24+y^2\/48)|^{1\/2}_0=1\/48+1\/192=5\/192"
"P(X<1\/2)=\\int^{2}_{0}\\int^{1\/2}_{0}f(x,y)dxdy=\\int^{2}_{0}\\int^{1\/2}_{0}(x^2 + xy\/3)dxdy="
"=\\int^{2}_{0}(x^3\/3+x^2y\/6)|^{1\/2}_0dy=\\int^{2}_{0}(1\/24+y\/24)dy="
"=(y\/24+y^2\/48)|^2_0=1\/12+1\/12=1\/6"
"P (Y < \u00bd | X < \u00bd )=5\\cdot6\/192=5\/32"
Comments
Leave a comment