a)
for joint p.d.f:
∫−∞∞∫−∞∞f(x,y)dxdy=1
we have:
∫02∫01(x2+xy/3)dxdy=∫02(x3/3+x2y/6)∣01dy=
=∫02(1/3+y/6)dy=(y/3+y2/12)∣02=2/3+4/12=1
so, f(x,y) is joint density function
b)
Marginal PDFs:
f(x)=∫02f(x,y)dy=∫02(x2+xy/3)dy=(x2y+xy2/6)∣02=
=2x2+2x/3
f(y)=∫01f(x,y)dx=∫01(x2+xy/3)dx=(x3/3+x2y/6)∣01=
=1/3+y/6
conditional probability density functions:
f(x∣y)=f(y)f(x,y)=1/3+y/6x2+xy/3
f(y∣x)=f(x)f(x,y)=2x2+2x/3x2+xy/3=2x+2/3x+y/3
c)
P(Y<½∣X<½)=P(X<1/2)P(Y<½,X<½)
P(Y<½,X<½)=∫01/2∫01/2f(x,y)dxdy=∫01/2∫01/2(x2+xy/3)dxdy=
=∫01/2(x3/3+x2y/6)∣01/2dy=∫01/2(1/24+y/24)dy=
=(y/24+y2/48)∣01/2=1/48+1/192=5/192
P(X<1/2)=∫02∫01/2f(x,y)dxdy=∫02∫01/2(x2+xy/3)dxdy=
=∫02(x3/3+x2y/6)∣01/2dy=∫02(1/24+y/24)dy=
=(y/24+y2/48)∣02=1/12+1/12=1/6
P(Y<½∣X<½)=5⋅6/192=5/32
Comments
Leave a comment