Answer to Question #199920 in Statistics and Probability for mannan maqsood

Question #199920

Suppose the joint p.d.f of (X,Y) is given by f(x,y) = x^2 + xy/3 0 < x < 1 , 0 < y < 2 = 0 otherwise a) Verify that given f(x,y) is a joint density function? b) Find marginal and conditional probability density functions? c) Compute P (Y < ½ | X < ½ )


1
Expert's answer
2022-01-11T17:35:19-0500

a)

for joint p.d.f:

f(x,y)dxdy=1\int^{\infin}_{-\infin}\int^{\infin}_{-\infin}f(x,y)dxdy=1


we have:

0201(x2+xy/3)dxdy=02(x3/3+x2y/6)01dy=\int^{2}_{0}\int^{1}_{0}(x^2 + xy/3)dxdy=\int^{2}_{0}(x^3/3+x^2y/6)|^1_0dy=


=02(1/3+y/6)dy=(y/3+y2/12)02=2/3+4/12=1=\int^{2}_{0}(1/3+y/6)dy=(y/3+y^2/12)|^2_0=2/3+4/12=1


so, f(x,y) is joint density function


b)

Marginal PDFs:

f(x)=02f(x,y)dy=02(x2+xy/3)dy=(x2y+xy2/6)02=f(x)=\int^2_0 f(x,y)dy=\int^2_0 (x^2 + xy/3)dy=(x^2y+xy^2/6)|^2_0=


=2x2+2x/3=2x^2+2x/3


f(y)=01f(x,y)dx=01(x2+xy/3)dx=(x3/3+x2y/6)01=f(y)=\int^1_0 f(x,y)dx=\int^1_0 (x^2 + xy/3)dx=(x^3/3+x^2y/6)|^1_0=


=1/3+y/6=1/3+y/6


conditional probability density functions:

f(xy)=f(x,y)f(y)=x2+xy/31/3+y/6f(x|y)=\frac{f(x,y)}{f(y)}=\frac{x^2 + xy/3}{1/3+y/6}


f(yx)=f(x,y)f(x)=x2+xy/32x2+2x/3=x+y/32x+2/3f(y|x)=\frac{f(x,y)}{f(x)}=\frac{x^2 + xy/3}{2x^2+2x/3}=\frac{x + y/3}{2x+2/3}


c)

P(Y<½X<½)=P(Y<½,X<½)P(X<1/2)P (Y < ½ | X < ½ )=\frac{P (Y < ½ ,X < ½ )}{P(X<1/2)}


P(Y<½,X<½)=01/201/2f(x,y)dxdy=01/201/2(x2+xy/3)dxdy=P (Y < ½ ,X < ½ )=\int^{1/2}_{0}\int^{1/2}_{0}f(x,y)dxdy=\int^{1/2}_{0}\int^{1/2}_{0}(x^2 + xy/3)dxdy=


=01/2(x3/3+x2y/6)01/2dy=01/2(1/24+y/24)dy==\int^{1/2}_{0}(x^3/3+x^2y/6)|^{1/2}_{0}dy=\int^{1/2}_{0}(1/24+y/24)dy=


=(y/24+y2/48)01/2=1/48+1/192=5/192=(y/24+y^2/48)|^{1/2}_0=1/48+1/192=5/192


P(X<1/2)=0201/2f(x,y)dxdy=0201/2(x2+xy/3)dxdy=P(X<1/2)=\int^{2}_{0}\int^{1/2}_{0}f(x,y)dxdy=\int^{2}_{0}\int^{1/2}_{0}(x^2 + xy/3)dxdy=


=02(x3/3+x2y/6)01/2dy=02(1/24+y/24)dy==\int^{2}_{0}(x^3/3+x^2y/6)|^{1/2}_0dy=\int^{2}_{0}(1/24+y/24)dy=


=(y/24+y2/48)02=1/12+1/12=1/6=(y/24+y^2/48)|^2_0=1/12+1/12=1/6


P(Y<½X<½)=56/192=5/32P (Y < ½ | X < ½ )=5\cdot6/192=5/32


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment