Question #199919

Let X and Y have Joint probability function given by f(x,y) = xy/66 x = 2,3,4 ; y = 1,2,3 Form the p.d table and find marginal probabilities function of X and Y? Also a) Find P (X=4 | Y=2)? b) Find P (X + Y < 3)? c) Are X and Y independent?


1
Expert's answer
2022-02-07T17:59:38-0500

The probability that XX takes value xx and YY takes value yy is: px,y=f(x,y)=xy66p_{x,y}=f(x,y)=\frac{xy}{66}. The probability distribution table has the form:

(x,y)px,y(2,1)266(2,2)466(2,3)666(3,1)366(3,2)666(3,3)966(4,1)466(4,2)866(4,3)1266\begin{array}{ c c c } (x,y) & p_{x,y}\\ (2,1) & \frac{2}{66} \\ (2,2) & \frac{4}{66} \\ (2,3) & \frac{6}{66} \\ (3,1) & \frac{3}{66} \\ (3,2) & \frac{6}{66} \\ (3,3) & \frac{9}{66} \\ (4,1) & \frac{4}{66} \\ (4,2) & \frac{8}{66} \\ (4,3) & \frac{12}{66} \\ \end{array}

As we can see from the table, 166(2+4+6+3+6+9+4+8+12)=5466\frac{1}{66}(2+4+6+3+6+9+4+8+12)=\frac{54}{66} . Since the sum is less than 1, XX, YY with the function f(x,y)f(x,y) is not a proper distribution. For correct distribution the formulae have the form:

a). P(X=4Y=2)=P((X=4)(Y=2))P(Y=2)=f(4,2)P((X=2)(Y=2))+P((X=3)(Y=2))+P((X=4)(Y=2))=P(X=4|Y=2)=\frac{P((X=4)\cap(Y=2))}{P(Y=2)}=\frac{f(4,2)}{P((X=2)\cap(Y=2)) +P((X=3)\cap(Y=2))+P((X=4)\cap(Y=2))}=

=f(4,2)f(2,2)+f(3,2)+f(4,2)=\frac{f(4,2)}{f(2,2) +f(3,2)+f(4,2)}

b). P(X+Y<3)=P(X+Y=2)=0P(X+Y<3)=P(X+Y=2)=0 It follows from fact that the minimum value of XX is 2.

c). By definition, two events AA and BB are independent if and only if P(AB)=P(A)P(B)P(A\cap B)=P(A)P(B). It is enough to check that P(X=x,Y=y)=f(x,y)=P(X=x)P(Y=y)=(lf(x,l))(kf(k,y))P(X=x,Y=y)=f(x,y)=P(X=x)P(Y=y)=(\sum_{l}f(x,l))(\sum_{k}f(k,y))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS