Question #199918

A bag contains 4 red and 6 black balls. A sample of 4 balls is selected from the bag without replacement. Let X is the number of red balls. Find the p.d for X? a) Find probability of X greater than 2? b) Find probability of X for non-negative integers? 


1
Expert's answer
2021-05-31T00:50:34-0400

Let X=X= the number of red balls.


P(X=0)=(40)(64)(104)=1(15)210=114P(X=0)=\dfrac{\dbinom{4}{0}\dbinom{6}{4}}{\dbinom{10}{4}}=\dfrac{1(15)}{210}=\dfrac{1}{14}

P(X=1)=(41)(63)(104)=4(20)210=821P(X=1)=\dfrac{\dbinom{4}{1}\dbinom{6}{3}}{\dbinom{10}{4}}=\dfrac{4(20)}{210}=\dfrac{8}{21}

P(X=2)=(42)(62)(104)=6(15)210=37P(X=2)=\dfrac{\dbinom{4}{2}\dbinom{6}{2}}{\dbinom{10}{4}}=\dfrac{6(15)}{210}=\dfrac{3}{7}

P(X=3)=(43)(61)(104)=4(6)210=435P(X=3)=\dfrac{\dbinom{4}{3}\dbinom{6}{1}}{\dbinom{10}{4}}=\dfrac{4(6)}{210}=\dfrac{4}{35}

P(X=4)=(44)(60)(104)=1(1)210=1210P(X=4)=\dfrac{\dbinom{4}{4}\dbinom{6}{0}}{\dbinom{10}{4}}=\dfrac{1(1)}{210}=\dfrac{1}{210}

x01234p(x)1/148/213/74/351/210\def\arraystretch{1.5} \begin{array}{c:c} x & 0 & 1 & 2 & 3 & 4 \\ \hline p(x) & 1/14 & 8/21 & 3/7 & 4/35 & 1/210 \\ \end{array}

a)

P(X>2)=P(X=3)+P(X=4)P(X>2)=P(X=3)+P(X=4)

=435+1210=542=\dfrac{4}{35}+\dfrac{1}{210}=\dfrac{5}{42}

b)


P(X=0)=114P(X=0)=\dfrac{1}{14}

P(X=1)=821P(X=1)=\dfrac{8}{21}

P(X=2)=37P(X=2)=\dfrac{3}{7}

P(X=3)=435P(X=3)=\dfrac{4}{35}

P(X=4)=1210P(X=4)=\dfrac{1}{210}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS