We have 3 blue and 5 Red balls lay in a box, three balls are chosen randomly out of the box find the probability distribution for number of blue balls without replacement.
B = Blue ball
R = Red ball
Let X denotes the event of number of blue balls are chosen out of three balls drawn from the box.
X = 0 (RRR)
"P(X=0) = \\frac{5}{8} \\times \\frac{4}{7} \\times \\frac{3}{6}=\\frac{60}{336}=0.178"
X = 1 (BRR, RBR, RRB)
"P(X=1) = (\\frac{3}{8} \\times \\frac{5}{7} \\times \\frac{4}{6})+(\\frac{5}{8} \\times \\frac{3}{7} \\times \\frac{4}{6})+(\\frac{5}{8} \\times \\frac{4}{7} \\times \\frac{3}{6})= \\frac{180}{336}=0.535"
X=2 (BBR, BRB, RBB)
"P(X=2) = (\\frac{3}{8} \\times \\frac{2}{7} \\times \\frac{5}{6})+(\\frac{3}{8} \\times \\frac{5}{7} \\times \\frac{2}{6})+(\\frac{5}{8} \\times \\frac{3}{7} \\times \\frac{2}{6}) = \\frac{90}{336}=0.267"
X=3 (BBB)
"P(X=3) = \\frac{3}{8} \\times \\frac{2}{7} \\times \\frac{1}{6} = \\frac{6}{336} = 0.017"
Probability distribution:
Comments
Leave a comment