Calculate the residual for x=3 when given
Hours,x and Scores, y (3,60),(7,92),(6,88),(5,81),(6,85),(4,74),(5,82),(7,94),(4,76),(5,84)
Mean "\\bar x=\\dfrac{\\sum x_i}{n}=\\dfrac{3+7+6+5+6+4+5+7+4+5}{10}=\\dfrac{52}{10}=5.2"
Mean "\\bar y =\\dfrac{\\sum y_i}{n}=\\dfrac{816}{10}=81.6"
"\\bar x=5.2" is not an integer , use assumed mean A=5
"\\bar y = 81.6" is not an integer , use assumed mean B = 82
Now,
From table:
"b_{yx}=\\dfrac{n\\sum dxdy-(\\sum dx)(\\sum dy)}{n\\sum dx^2-(\\sum dx)^2}\\\\\\ \\\\=\\dfrac{(10\\times 111)-2\\times (-4)}{(10\\times 16)-(2)^2}\\\\\\ \\\\=\\dfrac{1110+8}{160-4}\\\\\\ \\\\=\\dfrac{1118}{156}=7.1667"
Regression line y on x :
"y-\\bar y =b_{yx}(x-\\bar x)\\\\\\Rightarrow y-81.6=7.1667(x-5.2)\\\\\\Rightarrow \\boxed{ y=7.1667x+44.3333}"
Now estimate y for x=3
"y=7.1667\\times 3+44.3333\\\\\\Rightarrow y=21.5+44.3333\\\\\\Rightarrow \\boxed{y=65.8333}"
So, the residual at x=3
"\\epsilon_0=|y-\\hat y|"
From data when x=3 y= 60
And residual is the absolute value of a residual measures the vertical distance between the actual value of y and the estimated value of y
So residual at x=3
"\\Rightarrow |65.833-60|=5.833"
Comments
Leave a comment