Suppose the correlation coefficient is 0.80 and the number of observations is 62. What is the calculated test statistic? Is this significant correlation using a 1% level of significance? 2. Given that, r = 0.475 N = 10, Is this significant correlation between X and Y using a 5% level of significance?Â
"H0:\\rho=0"
"Ha:\\rho\\ne0"
"t=\\frac{r\\sqrt{n-2}}{\\sqrt{1-r^2}}"
"t=\\frac{0.8\\sqrt{60}}{\\sqrt{1-0.8^2}}=10.33"
"Cv=t_{60,0.005}=-2.66, 2.66,"
10.33 falls in the rejection region. 10.33>2.66, this, we reject H0 and conclude that the correlation is significant.
2.
"H0:\\rho=0"
"Ha:\\rho\\ne0"
"t=\\frac{r\\sqrt{n-2}}{\\sqrt{1-r^2}}"
"t=\\frac{0.475\\sqrt{8}}{\\sqrt{1-0.475^2}}=1.53"
"Cv=t_{8,0.025}=-2.306, 2.306."
1.5<2.306, we fail to reject the null hypothesis and conclude that there is no significant correlation between X and Y.
Comments
Leave a comment