On average a University Book Shop sells 300 text books per day with a standard deviation of 50 text books. Find the probability that the University Book Shop will sell at least 400 text books per day
Solution:
Given, μ=300,σ=50\mu=300,\sigma=50μ=300,σ=50
X∼N(μ,σ)P(X≥400)=1−P(X<400)=1−P(z<400−30050)=1−P(z<2)=1−0.97725=0.02275X\sim N(\mu,\sigma) \\P(X\ge400)=1-P(X<400) \\=1-P(z<\dfrac{400-300}{50}) \\=1-P(z<2) \\=1-0.97725 \\=0.02275X∼N(μ,σ)P(X≥400)=1−P(X<400)=1−P(z<50400−300)=1−P(z<2)=1−0.97725=0.02275
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments