a) Arithmetic mean
= 41 + 46 + . . . 40 + 48 20 = 651 20 = 32.55 = \frac{41+46+...40+48}{20}= \frac{651}{20}=32.55 = 20 41 + 46 + ...40 + 48 = 20 651 = 32.55
b) Geometric mean
= ( 41 × 46 × … × 40 × 48 ) 1 20 = 26.3908 = (41\times 46 \times … \times 40 \times 48)^{\frac{1}{20}} = 26.3908 = ( 41 × 46 × … × 40 × 48 ) 20 1 = 26.3908
c) Harmonic mean
= 20 ( 1 41 + 1 46 + . . . + 1 40 + 1 48 ) = 20 1.059 = 18.8854 = \frac{20}{ (\frac{1}{41} + \frac{1}{46}+...+ \frac{1}{40}+ \frac{1}{48}) } \\
= \frac{20}{1.059} = 18.8854 = ( 41 1 + 46 1 + ... + 40 1 + 48 1 ) 20 = 1.059 20 = 18.8854
d) Median
5 7 8 8 14 22 25 28 32 40 41 41 46 46 46 48 48 48 49 49
Median = 40 + 41 2 = 40.5 = \frac{40+41}{2} = 40.5 = 2 40 + 41 = 40.5
e) Mode = 46 and 48
f) Range = 49-5 = 44
g) Mean deviation
= ∣ 41 − 32.55 ∣ + ∣ 46 − 32.55 ∣ + . . . + ∣ 40 − 32.55 ∣ + ∣ 48 − 32.55 ∣ 20 = 14.395 = \frac{|41-32.55|+|46-32.55|+...+|40-32.55|+|48-32.55|}{20} = 14.395 = 20 ∣41 − 32.55∣ + ∣46 − 32.55∣ + ... + ∣40 − 32.55∣ + ∣48 − 32.55∣ = 14.395
h) Variance = 1 20 − 1 ( ( 41 − 32.55 ) 2 + ( 46 − 32.55 ) 2 + . . . + ( 40 − 32.55 ) 2 + ( 48 − 32.55 ) 2 ) = 270.99 = \frac{1}{20-1}( (41-32.55)^2+(46-32.55)^2+...+(40-32.55)^2+(48-32.55)^2 ) = 270.99 = 20 − 1 1 (( 41 − 32.55 ) 2 + ( 46 − 32.55 ) 2 + ... + ( 40 − 32.55 ) 2 + ( 48 − 32.55 ) 2 ) = 270.99
i) Standard Deviation = 270.99 = 16.461 = \sqrt{270.99} = 16.461 = 270.99 = 16.461
Comments