5 , 7 , 8 , 8 , 14 , 22 , 25 , 28 , 32 , 40 , 5, 7, 8, 8, 14, 22, 25, 28, 32, 40, 5 , 7 , 8 , 8 , 14 , 22 , 25 , 28 , 32 , 40 ,
41 , 41 , 46 , 46 , 46 , 48 , 48 , 48 , 49 , 49 41, 41, 46, 46, 46, 48, 48, 48, 49,49 41 , 41 , 46 , 46 , 46 , 48 , 48 , 48 , 49 , 49
a)
Arithmetic mean= ∑ i = 1 20 x i 20 = 651 20 = 32.55 =\dfrac{\displaystyle\sum_{i=1}^{20}x_i}{20}=\dfrac{651}{20}=32.55 = 20 i = 1 ∑ 20 x i = 20 651 = 32.55
b)
Geometric mean= ∏ i = 1 20 x i 20 ≈ 26.3908 =\sqrt[20]{\displaystyle\prod_{i=1}^{20}x_i}\approx26.3908 = 20 i = 1 ∏ 20 x i ≈ 26.3908
c)
Harmonic mean= 20 ∑ i = 1 20 1 x i ≈ 18.8854 =\dfrac{20}{\displaystyle\sum_{i=1}^{20}\dfrac{1}{x_i}}\approx18.8854 = i = 1 ∑ 20 x i 1 20 ≈ 18.8854
d)
Median = 40 + 41 2 = 40.5 \dfrac{40+41}{2}=40.5 2 40 + 41 = 40.5
e)
Modes are 46 and 48. Each appeared 3 times
f) Range = 49 − 5 = 44 =49-5=44 = 49 − 5 = 44
g) Mean deviation
Mean absolute deviation M A D MAD M A D
M A D = 1 20 ∑ i = 1 20 ∣ x i − x ˉ ∣ = 14.395 MAD=\dfrac{1}{20}\displaystyle\sum_{i=1}^{20}|x_i-\bar{x}|=14.395 M A D = 20 1 i = 1 ∑ 20 ∣ x i − x ˉ ∣ = 14.395
h) Variance
The variance of a sample is:
s 2 = 1 20 − 1 ∑ i = 1 20 ( x i − x ˉ ) 2 ≈ 270.99736842 s^2=\dfrac{1}{20-1}\displaystyle\sum_{i=1}^{20}(x_i-\bar{x})^2\approx 270.99736842 s 2 = 20 − 1 1 i = 1 ∑ 20 ( x i − x ˉ ) 2 ≈ 270.99736842
i) Standard Deviation
s = s 2 ≈ 270.99736842 ≈ 16.4620 s=\sqrt{s^2}\approx\sqrt{270.99736842}\approx16.4620 s = s 2 ≈ 270.99736842 ≈ 16.4620
Comments