Question #197145

box has 5 tickets numbered 1, 2, 3, 4 and 5. One 

of these tickets is drawn at random. 3 

i) If A = (1, 2) and B = {1), then show that P(B I A) 

> P(B) ii) If C = (1, 2, 3) and D = (1, 2, 4), then show that 

P(D I C) < P(D)


1
Expert's answer
2021-05-24T15:51:39-0400

Given numbers-- 1,2,3,4,5


(i) A=(1,2), B={1}


P(A)=25=0.4,P(B)=15=0.2,P(AB)=15=0.2P(A)=\dfrac{2}{5}=0.4, P(B)= \dfrac{1}{5}=0.2,P(A\cap B)=\dfrac{1}{5}=0.2


P(BA)=P(AB)P(A)=0.20.4=0.5>P(B)P(B|A)=\dfrac{P(A\cap B)}{P(A)}=\dfrac{0.2}{0.4}=0.5>P(B)


Hence, P(BA)>P(B)P(B|A)>P(B)


(ii) C=(1,2,3),D=(1,2,4)C=(1,2,3),D=(1,2,4)


P(D)=35=0.6,P(C)=35=0.6,P(CD)=25=0.4P(D)=\dfrac{3}{5}=0.6,P(C)=\dfrac{3}{5}=0.6,P(C\cap D)=\dfrac{2}{5}=0.4


P(DC)=P(DC)P(C)=0.40.6=0.66<P(D)P(D|C)=\dfrac{P(D\cap C)}{P(C)}=\dfrac{0.4}{0.6}=0.66<P(D)


Hence, P(DC)<P(D)P(D|C)<P(D) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS