box has 5 tickets numbered 1, 2, 3, 4 and 5. One
of these tickets is drawn at random. 3
i) If A = (1, 2) and B = {1), then show that P(B I A)
> P(B) ii) If C = (1, 2, 3) and D = (1, 2, 4), then show that
P(D I C) < P(D)
Given numbers-- 1,2,3,4,5
(i) A=(1,2), B={1}
"P(A)=\\dfrac{2}{5}=0.4, P(B)= \\dfrac{1}{5}=0.2,P(A\\cap B)=\\dfrac{1}{5}=0.2"
"P(B|A)=\\dfrac{P(A\\cap B)}{P(A)}=\\dfrac{0.2}{0.4}=0.5>P(B)"
Hence, "P(B|A)>P(B)"
(ii) "C=(1,2,3),D=(1,2,4)"
"P(D)=\\dfrac{3}{5}=0.6,P(C)=\\dfrac{3}{5}=0.6,P(C\\cap D)=\\dfrac{2}{5}=0.4"
"P(D|C)=\\dfrac{P(D\\cap C)}{P(C)}=\\dfrac{0.4}{0.6}=0.66<P(D)"
Hence, "P(D|C)<P(D)" .
Comments
Leave a comment