Question #197092

52 well-shuffled playing cards are distributed at random among 4 player's.Find the probability that a hand contain

(i) 3 aces

(ii) 2 kings and one queen

(iii) No cards of diamond

(iv) 5 pictured cards .


1
Expert's answer
2022-02-07T14:05:42-0500
52/4=1352/4=13

There are (5213)=52!13!(5213)!=635,013,559,600\dbinom{52}{13}=\dfrac{52!}{13!(52-13)!}=635,013,559,600 ways to distribute 13 cards to each of four people.

(i)


P(3 aces)=(43)(524133)(5213)P(3\ aces)=\dfrac{\dbinom{4}{3}\dbinom{52-4}{13-3}}{\dbinom{52}{13}}

=4(6,540,715,896)635,013,559,600=0.0412=\dfrac{4(6,540,715,896)}{635,013,559,600}=0.0412

(ii)


P(2 kings and 1 queen)=(42)(41)(528133)(5213)P(2\ kings\ and\ 1\ queen)=\dfrac{\dbinom{4}{2}\dbinom{4}{1}\dbinom{52-8}{13-3}}{\dbinom{52}{13}}

=6(4)(2,481,256,778)635,013,559,600=0.0938=\dfrac{6(4)(2,481,256,778)}{635,013,559,600}=0.0938



(iii)


P(No diamonds)=(130)(5213130)(5213)P(No\ diamonds)=\dfrac{\dbinom{13}{0}\dbinom{52-13}{13-0}}{\dbinom{52}{13}}

=1(8,122,425,444)635,013,559,600=0.0128=\dfrac{1(8,122,425,444)}{635,013,559,600}=0.0128



(iv)


P(5 picture cards)=(125)(5212135)(5213)P(5\ picture\ cards)=\dfrac{\dbinom{12}{5}\dbinom{52-12}{13-5}}{\dbinom{52}{13}}

=792(76,904,685)635,013,559,600=0.0959=\dfrac{792(76,904,685)}{635,013,559,600}=0.0959




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS