Question #197043

Consider the following ungrouped data:

41 46 7 46 32 5 14 28 48 49 8 49 48 25 41 8 22 46 40 48

Find the following:

a)  Arithmetic mean

b)  Geometric mean

c)  Harmonic mean

d)  Median

e)  Mode

f)  Range

g)  Mean deviation

h)  Variance

i)  Standard Deviation


1
Expert's answer
2021-05-24T16:09:49-0400
5,7,8,8,14,22,25,28,32,40,5, 7, 8, 8, 14, 22, 25, 28, 32, 40,

41,41,46,46,46,48,48,48,49,4941, 41, 46, 46, 46, 48, 48, 48, 49,49

a)

Arithmetic mean=i=120xi20=65120=32.55=\dfrac{\displaystyle\sum_{i=1}^{20}x_i}{20}=\dfrac{651}{20}=32.55


b)

Geometric mean=i=120xi2026.3908=\sqrt[20]{\displaystyle\prod_{i=1}^{20}x_i}\approx26.3908


c)

Harmonic mean=20i=1201xi18.8854=\dfrac{20}{\displaystyle\sum_{i=1}^{20}\dfrac{1}{x_i}}\approx18.8854

d)

Median = 40+412=40.5\dfrac{40+41}{2}=40.5


e)

Modes are 46 and 48. Each appeared 3 times


f) Range =495=44=49-5=44


g)  Mean deviation

Mean absolute deviation MADMAD


MAD=120i=120xixˉ=14.395MAD=\dfrac{1}{20}\displaystyle\sum_{i=1}^{20}|x_i-\bar{x}|=14.395

h)  Variance

The variance of a sample is:


s2=1201i=120(xixˉ)2270.99736842s^2=\dfrac{1}{20-1}\displaystyle\sum_{i=1}^{20}(x_i-\bar{x})^2\approx 270.99736842

i)  Standard Deviation


s=s2270.9973684216.4620s=\sqrt{s^2}\approx\sqrt{270.99736842}\approx16.4620

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS