Answer to Question #192961 in Statistics and Probability for CLYDE

Question #192961
  1. To estimate the average number of customers entering and buying at the supermarket, the supervisor of that supermarket estimated the number of customers visiting every 5 minutes. She randomly selects 5-min intervals and counts the number of arrivals at the supermarket. The figure 58, 32, 41, 56, 80, 45, 29, 32, and 78 were obtained and tallied. The analysis assume that the number of arrivals is normally distributed. Based on these data, compute a 95% confidence interval to have an estimation of the mean value for all 5-min intervals.
1
Expert's answer
2021-05-14T13:40:03-0400

Since the sample size is less than 30 and the population variance unknown, we use t distribution.

"\\bar x=\\frac {\\sum x_i} {n}"

"=\\frac{58+32+41+...+78}{9}"

=50.11

"s=\\sqrt{\\frac{\\sum(x_i-\\bar x)^2 }{n-1}}"

"=\\sqrt{\\frac{(58-50.11)^2+(32-50.11)^2+...+(78-50.11)^2}{9-1}}" =19.2966

"95 \\% CI= \\bar x \u00b1 t_{\\frac{\\alpha} {2}} *\\frac{s} {\\sqrt n}"

="50.11\u00b12.306\u00d7\\frac{19.2966}{\\sqrt{9}}"

=(35. 277,64.943).

We are 95% confident that the mean value for the number of customers arriving in 5 minute intervals is 35.277 and 64.943.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS