he following table shows the incomes of super 10 taxis by year
YEAR x-CODE
2001 1
2002 2
2003 3
2004 4
2005 5
Total 15
a) Plot the data on a scatter plot diagram
b) Compute Pearson’s correlation coefficient (r)
c) Compute Spearman’s ranking (rho)
       Â
(a) Scatter Plot of the data is-
(b)
"E(XY)=\\dfrac{\\sum XY}{n}=\\dfrac{30055}{5}=6011\n\n\\\\[9pt]\n\n E(X)=\\dfrac{\\sum X}{n}=\\dfrac{10015}{5}=2003\n\n\\\\[9pt]\n\n E(Y)=\\dfrac{\\sum Y}{n}=\\dfrac{15}{5}=3\n\n\\\\[9pt]\n\n \\sigma_X=\\sqrt{\\dfrac{ (x-\\bar{x})^2}{n}}=\\sqrt{\\dfrac{10}{5}}=\\sqrt{2}\n\n\\\\[9pt]\n\n \\sigma_Y=\\sqrt{\\dfrac{(y-\\bar{y})^2}{n}}=\\sqrt{\\dfrac{10}{5}}=\\sqrt{2}"
Pearson correlation coefficient "r=\\dfrac{Cov(X,Y)}{\\sigma_X,\\sigma_Y}"
"=\\dfrac{E(XY)-E(X)E(Y)}{\\sigma_X.\\sigma_Y}\n\n\\\\[9pt]\n\n =\\dfrac{6011-2003(3)}{\\sqrt{2}.\\sqrt{2}}\\\\[9pt]\n\n =\\dfrac{2}{2}=1"
(c) spearmen rank correlation coefficient-
"=1-\\dfrac{6d^2}{n^3-n}"
where, d= Difference between x and Y
"=1-\\dfrac{6\\times 20000000}{(5)^3-5}"
"=1-\\dfrac{1200000000}{120}=1-10^6"
Comments
Leave a comment