Question #192868

he following table shows the incomes of super 10 taxis by year

YEAR x-CODE

2001 1

2002 2

2003 3

2004 4

2005 5

Total 15

a) Plot the data on a scatter plot diagram

b) Compute Pearson’s correlation coefficient (r)

c) Compute Spearman’s ranking (rho)


        


1
Expert's answer
2021-05-17T11:57:01-0400



(a) Scatter Plot of the data is-




(b)

E(XY)=XYn=300555=6011E(X)=Xn=100155=2003E(Y)=Yn=155=3σX=(xxˉ)2n=105=2σY=(yyˉ)2n=105=2E(XY)=\dfrac{\sum XY}{n}=\dfrac{30055}{5}=6011 \\[9pt] E(X)=\dfrac{\sum X}{n}=\dfrac{10015}{5}=2003 \\[9pt] E(Y)=\dfrac{\sum Y}{n}=\dfrac{15}{5}=3 \\[9pt] \sigma_X=\sqrt{\dfrac{ (x-\bar{x})^2}{n}}=\sqrt{\dfrac{10}{5}}=\sqrt{2} \\[9pt] \sigma_Y=\sqrt{\dfrac{(y-\bar{y})^2}{n}}=\sqrt{\dfrac{10}{5}}=\sqrt{2}


Pearson correlation coefficient r=Cov(X,Y)σX,σYr=\dfrac{Cov(X,Y)}{\sigma_X,\sigma_Y}

=E(XY)E(X)E(Y)σX.σY=60112003(3)2.2=22=1=\dfrac{E(XY)-E(X)E(Y)}{\sigma_X.\sigma_Y} \\[9pt] =\dfrac{6011-2003(3)}{\sqrt{2}.\sqrt{2}}\\[9pt] =\dfrac{2}{2}=1


(c) spearmen rank correlation coefficient-

=16d2n3n=1-\dfrac{6d^2}{n^3-n}


where, d= Difference between x and Y


=16×20000000(5)35=1-\dfrac{6\times 20000000}{(5)^3-5}


=11200000000120=1106=1-\dfrac{1200000000}{120}=1-10^6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS