The following table is a frequency table of the scores obtained in a competition. Use the table answer the questions below.
Classes
Frequency(f)
10 - 13 4
13 - 16 6
16 - 19 12
19 - 22 14
22 - 25 4
Total 40
a. Find the mean, median and mode of the score. [2,2,2]
b. Find the range, variance, and standard deviation. [1,3,1]
c. Find the coefficient of variation. [2]
d. Compute the interquartile range.
a.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c:c}\n Class & f & m & d & f\\cdot d & f\\cdot d^2 & cf\\\\ \\hline\n10-13 & 4 & 11.5 &-2 &- 8 & 16 & 4 \\\\\n13-16 & 6 & 14.5 & -1 & -6 & 6 & 10 \\\\\n16-19 & 12 & 17.5 & 0 & 0 & 0 & 22 \\\\\n19-22 & 14 & 20.5 & 1& 14 & 14 & 36 \\\\\n22-25 & 4 & 23.5 & 2 & 8 & 16 & 40 \\\\\n \n\\end{array}""A=17.5"
"d=\\dfrac{x-A}{h}, h=3"
"=17.5+\\dfrac{8}{40}\\cdot 3=18.1"
The median class is 16-19.
"L=16, n=40"
Cumulative frequency of the class preceding the median class "cf=10"
Frequency of the median class "f=12"
Class length of median class "c=3"
"Median\\ M=L+\\dfrac{\\dfrac{n}{2}- cf}{f}\\cdot c""=16+\\dfrac{\\dfrac{40}{2}- 10}{12}\\cdot 3=18.5"
Maximum frequency is14.
The mode class is 19-22.
"L=19"
Cumulative frequency of the class preceding the median class "cf=10"
Frequency of the mode class "f_1=14"
Frequency of the preceding class "f_0=12"
Frequency of the succeeding class "f_2=4"
Class length of mode class "c=3"
"=19+\\dfrac{14-12}{2(14)-12-4}\\cdot 3=19.5"
b.
"=\\dfrac{52-\\dfrac{(8)^2}{40}}{40-1}\\cdot 3^2=\\dfrac{151.2}{13}\\approx11.63077"
"S=\\sqrt{S^2}=\\sqrt{\\dfrac{151.2}{13}}\\approx3.4104"
c.
"Coefficient \\ of \\ Variation=\\dfrac{S}{\\bar{x}}\\cdot 100\\%""=\\dfrac{\\sqrt{\\dfrac{151.2}{13}}}{18.1}\\cdot 100\\%\\approx18.842\\%"
d.
Class with "(\\dfrac{n}{4})^{th}" value of the observation in "cf" column
"=(\\dfrac{40}{4})^{th}" value of the observation in "cf" column
"=(10)^{th}" value of the observation in "cf" column
and it lies in the class 13-16.
"Q_1" class: "13-16"
"L=13"
"=13+\\dfrac{\\dfrac{40}{4}- 4}{6}\\cdot 3=16"
Class with "(\\dfrac{3n}{4})^{th}" value of the observation in "cf" column
"=(\\dfrac{3\\cdot 40}{4})^{th}" value of the observation in "cf" column
"=(30)^{th}" value of the observation in "cf" column
and it lies in the class 19-22.
"Q_3" class: "19-22"
"L=19"
"=19+\\dfrac{\\dfrac{3\\cdot 40}{4}- 22}{14}\\cdot 3\\approx20.7143"
"IQR=Q_3-Q_1\\approx20.7143-16\\approx4.7143"
Comments
Leave a comment