sketch in the normal table and determine the probability of the following z scores
a. p(z<+0.85)
b. p(z > - 1.23)
c. p(-1.50 <z< + 1.50)
d. p(0.00 <z< + 2.27)
The probability is equal to the blue area under the curve.
Using the standard normal table we find this area.
a)
P(Z<0.85) = 0.8023
b)
P(Z>-1.23) = 0.8907
c)
To find the probability of P(-1.5<Z<1.5), we use the following formula:
P(-1.5<Z<1.5) = P(Z<1.5) - P(Z< -1.5)
P(Z<1.5) can be found from a standard normal table, an it is equal to 0.9332
P(Z< -1.5) = 1 - P(Z<1.5) = 1 - 0.9332 = 0.0668
So,
P(-1.5<Z<1.5) = 0.9332 - 0.0668 = 0.8664
d)
P(0<Z<1.5) = 0.4884
Comments
Leave a comment