Question #190913

Q. 1. joint pdf of random variables ‘X’ and ‘Y’ is

F(x,y)=1/2, 0 <x<y, 0<y<2

 

Find

a. The marginal pdfs, fX(x) and fY(y).

b. The conditional pdfs, fX/Y(x/y) and fY/X(y/x)

c. The E(X/Y=1)

d. Are ‘X’ and ‘Y’ statistically The independent?



1
Expert's answer
2021-05-12T02:03:33-0400

F(x,y)=12,0<x<1,0<y<2F(x,y) = \dfrac{1}{2} , 0 <x<1, 0<y<2


a.) fX(x)=fXY(x,y)dyf_X(x) = \int_{-\infty}^{\infty}f_{XY}(x,y)dy


=0212dy=1= \int_{0}^{2}\dfrac{1}{2}dy = 1


fY(y)=0112dx=12f_Y(y) = \int_{0}^{1}\dfrac{1}{2}dx = \dfrac{1}{2}


b.) fX/Y(x/y)=fX,Y(x,y)fY(y=12fX/Y(x/y) = \dfrac{f_{X,Y}(x,y)}{f_Y(y} = \dfrac{1}{2}


fYX(yx)=fX,YfX(x)=1f_{Y|X}(y|x) = \dfrac{f_{X,Y}}{f_X(x)} = 1


c.) E(X/Y=1)=xfXY(xy)dx=01x.12dx=14E(X/Y=1) = \int_{-\infty}^{\infty}xf_{X|Y}(x|y)dx = \int_{0}^{1}x.\dfrac{1}{2}dx = \dfrac{1}{4}


d.) Since, fX(x)fY(y)f_X(x) \ne f_Y(y)

Hence,X and Y are statistically independent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS