Question #190669

Q. 1. The joint pdf of random variables ‘X’ and ‘Y’ is

 

Find

a. The marginal pdfs, fX(x) and fY(y).

b. The conditional pdfs, fX/Y(x/y) and fY/X(y/x)

c. The E(X/Y=1)

d. Are ‘X’ and ‘Y’ statistically independent?



1
Expert's answer
2021-05-11T06:04:26-0400

(a) fx(x)=fx,y(x,y)dy=x212dy={2x2,  0x2 and 0,  elsef_x(x)=\int f_{x,y}(x,y)dy=\int_x^2\frac{1}{2}dy=\{ \frac{2-x}{2},\ \ 0\le x\le 2 \ and \ 0,\ \ else


fy(y)=fx,y(x,y)dx=0y12dx={y2,0y2  and  0, elsef_y(y)=\int f_{x,y}(x,y)dx=\int_0^y\frac{1}{2}dx=\{\frac{y}{2},0\le y\le 2\ \ and \ \ 0, \ else



(b) fXY(X/Y)=fx,y(x,y)fy(y)=1/2y/x={1y,  0xy  and  0,   elsef_{\frac{X}{Y}}(X/Y)=\dfrac{f_{x,y}(x,y)}{f_y(y)}=\dfrac{1/2}{y/x}=\{\frac{1}{y}, \ \ 0\le x\le y\ \ and\ \ 0,\ \ \ else


fY/X(Y/X)=fx,y(x,y)fx(x)=1/2(2x)/2={12x,  xy2   and 0,  elsef_{Y/X}(Y/X)=\dfrac{f_{x,y}(x,y)}{f_x(x)}=\dfrac{1/2}{(2-x)/2}=\{\frac{1}{2-x},\ \ x\le y\le 2\ \ \ and \ 0,\ \ else


(c) E(X/Y=1)=01fX/Y(x/1)dx=011dx=1E(X/Y=1)=\int_0^1f_{X/Y}(x/1)dx=\int_0^11dx=1


(d) fX/Y(x/y)fx(x)f_{X/Y}(x/y)\neq f_x(x)\\

X,Y\Rightarrow X, Y are not statistically independent.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS