Answer to Question #190669 in Statistics and Probability for Ali haider khan

Question #190669

Q. 1. The joint pdf of random variables ‘X’ and ‘Y’ is

 

Find

a. The marginal pdfs, fX(x) and fY(y).

b. The conditional pdfs, fX/Y(x/y) and fY/X(y/x)

c. The E(X/Y=1)

d. Are ‘X’ and ‘Y’ statistically independent?



1
Expert's answer
2021-05-11T06:04:26-0400

(a) "f_x(x)=\\int f_{x,y}(x,y)dy=\\int_x^2\\frac{1}{2}dy=\\{ \\frac{2-x}{2},\\ \\ 0\\le x\\le 2 \\ and \\ 0,\\ \\ else"


"f_y(y)=\\int f_{x,y}(x,y)dx=\\int_0^y\\frac{1}{2}dx=\\{\\frac{y}{2},0\\le y\\le 2\\ \\ and \\ \\ 0, \\ else"



(b) "f_{\\frac{X}{Y}}(X\/Y)=\\dfrac{f_{x,y}(x,y)}{f_y(y)}=\\dfrac{1\/2}{y\/x}=\\{\\frac{1}{y}, \\ \\ 0\\le x\\le y\\ \\ and\\ \\ 0,\\ \\ \\ else"


"f_{Y\/X}(Y\/X)=\\dfrac{f_{x,y}(x,y)}{f_x(x)}=\\dfrac{1\/2}{(2-x)\/2}=\\{\\frac{1}{2-x},\\ \\ x\\le y\\le 2\\ \\ \\ and \\ 0,\\ \\ else"


(c) "E(X\/Y=1)=\\int_0^1f_{X\/Y}(x\/1)dx=\\int_0^11dx=1"


(d) "f_{X\/Y}(x\/y)\\neq f_x(x)\\\\"

"\\Rightarrow X, Y" are not statistically independent.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog